Download Irish leader dataset

Click here to download the Irish leader datatset. This file details information on all Taoisigh since 1922.

Source: Wikipedia

Tentative Codebook

Variable NameVariable Description
noTaoiseach number
nameName
partyPolitical party
constituencyElectoral constituency
bornDate of birth
diedDate of death
first_electedDate first entered the Dail
entered_officeDate entering office of Taoiseach
left_officeDate leaving office of Taoiseach
left_dailDate left the Dail
cum_daysTotal number of days in Dail
cum_yearsTotal number of years in Dail
second_levelSecondary school Taoiseach attended
third_levelUniversity Taoiseach attended
periodNumber of times the person was Taoiseach
before_after_taoiseachTitle of cabinet positions held by the Taoiseach when he was not holding office of Taoiseach
while_taoiseachTitle of cabinet positions held by the Taoiseach when he was in office as Taoiseach
no_pos_before_afterNumber of cabinet positions the man held when he was not holding office of Taoiseach
no_pos_durNumber of cabinet positions the man held when he was Taoiseach
county_bornThe county the Taoiseach was born in
ageAge of Taoiseach
age_enterAge the man entered office of Taoiseach
genderGender

Packages we will need:

library(tidyverse)
library(ggthemes)
library(readr)
library(sf)
library(tmap)


With the dataset, we can add map data and plot the 26 counties of Ireland.

If you follow this link below, you can download county map data from the following website by Chris Brundson

https://rpubs.com/chrisbrunsdon/part1

Thank you to Chris for the tutorial and data access!

Read in the simple features data with the st_read() from the sf package.

setwd("C:/Users/my_name/Desktop")

county_geom <- sf::st_read("counties.json") %>% 
   clean_names() %>% 
   mutate(county = stringr::str_to_title(county))

Next we count the number of counties that have given Ireland a Taoiseach with the group_by() and count() functions.

One Taoiseach, Eamon DeValera, was born in New York City, so he will not be counted in the graph.

Sorry Dev.

Sad Friends Tv GIF - Find & Share on GIPHY

We can join the Taoisech dataset to the county_geom dataframe by the county variable. The geometric data has the counties in capital letters, so we convert tolower() letters.

Add the geometry variable in the main ggplot() function.

We can play around with the themes arguments and add the theme_map() from the ggthemes package to get the look you want.

I added a few hex colors to indicate the different number of countries.

If you want a transparent background, we save it with the ggsave() function and set the bg argument to “transparent”

full_taois %>% 
  select(county = county_born, everything()) %>% 
  distinct(name, .keep_all = TRUE) %>% 
  group_by(county) %>% 
  count() %>% 
  ungroup() %>% 
  right_join(county_geom, by = c("county" = "county")) %>%
  replace(is.na(.), 0) %>% 
  ggplot(aes(geometry = geometry, fill = factor(n))) +  
  geom_sf(linewidth = 1, color = "white") +
  ggthemes::theme_map() + 
  theme(panel.background = element_rect(fill = 'transparent'),  
    legend.title = element_blank(),
    legend.text = element_text(size = 20) )  + 
scale_fill_manual(values = c("#8d99ae", "#a8dadc", "#457b9d", "#e63946", "#1d3557")) 

ggsave('county_map.png', county_map, bg = 'transparent')

Counties that have given us Taoisigh

Source: Wikipedia

Next we can graph the ages of the Taoiseach when they first entered office. With the reorder() function, we can compare how old they were.

full_taois %>%
  mutate(party = case_when(party == "Cumann na nGaedheal" ~ "CnG",
                           TRUE ~ as.character(party))) %>% 
  distinct(name, .keep_all = TRUE) %>% 
  mutate(age_enter = round(age_enter, digits = 0)) %>% 
  ggplot(aes(x = reorder(name, age_enter),
             y = age_enter,
             fill = party)) + 
  geom_bar(stat = "identity") +
  coord_flip() + 
  scale_fill_manual(values = c( "#8e2420","#66bb66","#6699ff")) + 
  theme(text = element_text(size = 40),
    axis.title.x = element_blank(), 
    axis.title.y = element_blank(), 
    panel.background = element_rect(fill = 'transparent'),  
    plot.background = element_rect(fill = 'transparent', color = NA), 
    panel.grid.major = element_blank(), 
    panel.grid.minor = element_blank(),
    legend.background = element_rect(fill = 'transparent'), #transparent legend bg
    legend.key.size = unit(2, 'cm'),
    legend.key.height = unit(2, 'cm'),
    legend.key.width = unit(2, 'cm'), 
    legend.title = element_blank(),
    legend.text = element_text(size = 20) ) 

ggsave('age_chart.png', age_chart, bg = 'transparent')

Ages of the Taoiseach entering office for the first time

Source: Wikipedia

We can calculate to see which party has held the office of Taoiseach the longest with a special, but slightly mad-looking pie chart

Click here to learn more about creating these plots.

full_taois %>% 
  distinct(name, .keep_all = TRUE) %>% 
  group_by(party) %>% 
  summarise(total_cum = sum(cum_days)) %>% 
    ggplot(aes(reorder(total_cum, party), total_cum, fill = as.factor(party))) + 
  geom_bar(stat = "identity") + 
  coord_polar("x", start = 0, direction = - 1)  + 
  scale_fill_manual(values = c( "#8e2420","#66bb66","#6699ff")) + 
  ggthemes::theme_map()

Number of years each party held the office of Taoiseach

Source: Wikipedia

Fianna Fail has held the office over twice as long as Fine Fail and much more than the one term of W Cosgrove (the only CnG Taoiseach)

Last we can create an icon waffle plots. We can use little man icons to create a waffle plot of all the men (only men) in the office, colored by political party.

I got the code and tutorial for making these waffle plots from the following website:

https://www.listendata.com/2019/06/create-infographics-with-r.html

It was very helpful in walking step by step through how to download the FontAwesome icons into the correct font folder on the PC. I had a heap of issues with the wrong versions of the htmltools.

remotes::install_github("JohnCoene/echarts4r")

remotes::install_github("hrbrmstr/waffle")

devtools::install_github("JohnCoene/echarts4r.assets")

remotes::install_github("hrbrmstr/waffle")

library(echarts4r)
library(extrafont)
library(showtext)
library(magrittr)
library(echarts4r.assets)
library(htmltools)
library(waffle)

extrafont::font_import(path = "C:/Users/my_name/Desktop",  pattern = "fa-", prompt =  FALSE)

extrafont::loadfonts(device="win")

font_add(family = "FontAwesome5Free-Solid", regular = "C:/Users/my_name/Desktop/fa-solid-900.ttf")
font_add(family = "FontAwesome5Free-Regular", regular = "C:/Users/my_name/Desktop/fa-regular-400.ttf")
font_add(family = "FontAwesome5Brands-Regular", regular = "C:/Users/my_name/Desktop/fa-brands-400.ttf")

showtext_auto()

Next we will find out the number of Taoisigh from each party:

And we fill a vector of values into the waffle() function. We can play around with the number of rows. Three seems like a nice fit for the number of icons (glyphs).

Also, we choose the type of glyph image we want with the the use_glyph() argument.

The options are the glyphs that come with the Font Awesome package we downloaded with extrafonts.

waffle(
  c( Cumann na nGaedheal = 1      ` = 1,
      `Fianna Fail = 8    ` = 8, 
      `Fine Gael = 6    ` = 6), 
  rows = 3, 
  colors = c("#8e2420", "#66bb66",  "#6699ff"),
  use_glyph = "male", 
  glyph_size = 25, 
  legend_pos = "bottom")

Click below to download the infographic that was edited and altered with Canva.com.

Jimmy Fallon Dancing GIF by The Tonight Show Starring Jimmy Fallon - Find & Share on GIPHY
Advertisement

How to interpret linear models with the broom package in R

Packages you will need:

library(tidyverse)
library(magrittr)     # for pipes

library(broom)        # add model variables
library(easystats)    # diagnostic graphs

library(WDI)           # World Bank data
library(democracyData) # Freedom House data

library(countrycode)   # add ISO codes
library(bbplot)        # pretty themes
library(ggthemes)      # pretty colours
library(knitr)         # pretty tables
library(kableExtra)    # make pretty tables prettier

This blog will look at the augment() function from the broom package.

After we run a liner model, the augment() function gives us more information about how well our model can accurately preduct the model’s dependent variable.

It also gives us lots of information about how does each observation impact the model. With the augment() function, we can easily find observations with high leverage on the model and outlier observations.

For our model, we are going to use the “women in business and law” index as the dependent variable.

According to the World Bank, this index measures how laws and regulations affect women’s economic opportunity.

Overall scores are calculated by taking the average score of each index (Mobility, Workplace, Pay, Marriage, Parenthood, Entrepreneurship, Assets and Pension), with 100 representing the highest possible score.

Into the right-hand side of the model, our independent variables will be child mortality, military spending by the government as a percentage of GDP and Freedom House (democracy) Scores.

First we download the World Bank data and summarise the variables across the years.

Click here to read more about the WDI package and downloading variables from the World Bank website.

women_business = WDI(indicator = "SG.LAW.INDX")
mortality = WDI(indicator = "SP.DYN.IMRT.IN")
military_spend_gdp <- WDI(indicator = "MS.MIL.XPND.ZS")

We get the average across 60 ish years for three variables. I don’t want to run panel data regression, so I get a single score for each country. In total, there are 160 countries that have all observations. I use the countrycode() function to add Correlates of War codes. This helps us to filter out non-countries and regions that the World Bank provides. And later, we will use COW codes to merge the Freedom House scores.

women_business %>%
  filter(year > 1999) %>% 
  inner_join(mortality) %>% 
  inner_join(military_spend_gdp) %>% 
  select(country, year, iso2c, 
         fem_bus = SG.LAW.INDX, 
         mortality = SP.DYN.IMRT.IN,
         mil_gdp = MS.MIL.XPND.ZS)  %>% 
  mutate_all(~ifelse(is.nan(.), NA, .)) %>% 
  select(-year) %>% 
  group_by(country, iso2c) %>% 
  summarize(across(where(is.numeric), mean,  
   na.rm = TRUE, .names = "mean_{col}")) %>% 
  ungroup() %>% 
  mutate(cown = countrycode::countrycode(iso2c, "iso2c", "cown")) %>% 
  filter(!is.na(cown)) -> wdi_summary

Next we download the Freedom House data with the democracyData package.

Click here to read more about this package.

fh <- download_fh()

fh %>% 
  group_by(fh_country) %>% 
  filter(year > 1999) %>% 
  summarise(mean_fh = mean(fh_total, na.rm = TRUE)) %>% 
  mutate(cown = countrycode::countrycode(fh_country, "country.name", "cown")) %>% 
  mutate_all(~ifelse(is.nan(.), NA, .)) %>% 
  filter(!is.na(cown))  -> fh_summary

We join both the datasets together with the inner_join() functions:

fh_summary %>%
  inner_join(wdi_summary, by = "cown") %>% 
  select (-c(cown, iso2c, fh_country)) -> wdi_fh

Before we model the data, we can look at the correlation matrix with the corrplot package:

wdi_fh %>% 
  drop_na() %>% 
  select(-country)  %>% 
  select(`Females in business` = mean_fem_bus,
        `Mortality rate` = mean_mortality,
        `Freedom House` = mean_fh,
        `Military spending GDP` = mean_mil_gdp)  %>% 
  cor() %>% 
  corrplot(method = 'number',
           type = 'lower',
           number.cex = 2, 
           tl.col = 'black',
           tl.srt = 30,
           diag = FALSE)

Next, we run a simple OLS linear regression. We don’t want the country variables so omit it from the list of independent variables.

fem_bus_lm <- lm(mean_fem_bus ~ . - country, data = wdi_fh)
Dependent variable:
mean_fem_bus
mean_fh-2.807***
(0.362)
mean_mortality-0.078*
(0.044)
mean_mil_gdp-0.416**
(0.205)
Constant94.684***
(2.024)
Observations160
R20.557
Adjusted R20.549
Residual Std. Error11.964 (df = 156)
F Statistic65.408*** (df = 3; 156)
Note:*p<0.1; **p<0.05; ***p<0.01

We can look at some preliminary diagnostic plots.

Click here to read more about the easystat package. I found it a bit tricky to download the first time.

performance::check_model(fem_bus_lm)

The line is not flat at the beginning so that is not ideal..

We will look more into this later with the variables we create with augment() a bit further down this blog post.

None of our variables have a VIF score above 5, so that is always nice to see!

From the broom package, we can use the augment() function to create a whole heap of new columns about the variables in the model.

fem_bus_pred <- broom::augment(fem_bus_lm)

  • .fitted = this is the model prediction value for each country’s dependent variable score. Ideally we want them to be as close to the actual scores as possible. If they are totally different, this means that our independent variables do not do a good job explaining the variance in our “women in business” index.

  • .resid = this is actual dependent variable value minus the .fitted value.

We can look at the fitted values that the model uses to predict the dependent variable – level of women in business – and compare them to the actual values.

The third column in the table is the difference between the predicted and actual values.

fem_bus_pred %>% 
  mutate(across(where(is.numeric), ~round(., 2))) %>%
  arrange(mean_fem_bus) %>% 
  select(Country = country,
    `Fem in bus (Actual)` = mean_fem_bus,
    `Fem in bus (Predicted)` = .fitted,
    `Fem in bus (Difference)` = .resid,
                  `Mortality rate` = mean_mortality,
                  `Freedom House` = mean_fh,
                  `Military spending GDP` = mean_mil_gdp)  %>% 
  kbl(full_width = F) 
Country Leverage of country Fem in bus (Actual) Fem in bus (Predicted)
Austria 0.02 88.92 88.13
Belgium 0.02 92.13 87.65
Costa Rica 0.02 79.80 87.84
Denmark 0.02 96.36 87.74
Finland 0.02 94.23 87.74
Iceland 0.02 96.36 88.90
Ireland 0.02 95.80 88.18
Luxembourg 0.02 94.32 88.33
Sweden 0.02 96.45 87.81
Switzerland 0.02 83.81 87.78

And we can graph them out:

fem_bus_pred %>%
  mutate(fh_category = cut(mean_fh, breaks =  5,
  labels = c("full demo ", "high", "middle", "low", "no demo"))) %>%         ggplot(aes(x = .fitted, y = mean_fem_bus)) + 
  geom_point(aes(color = fh_category), size = 4, alpha = 0.6) + 
  geom_smooth(method = "loess", alpha = 0.2, color = "#20948b") + 
  bbplot::bbc_style() + 
  labs(x = '', y = '', title = "Fitted values versus actual values")

In addition to the predicted values generated by the model, other new columns that the augment function adds include:

  • .hat = this is a measure of the leverage of each variable.

  • .cooksd = this is the Cook’s Distance. It shows how much actual influence the observation had on the model. Combines information from .residual and .hat.

  • .sigma = this is the estimate of residual standard deviation if that observation is dropped from model

  • .std.resid = standardised residuals

If we look at the .hat observations, we can examine the amount of leverage that each country has on the model.

fem_bus_pred %>% 
  mutate(dplyr::across(where(is.numeric), ~round(., 2))) %>%
  arrange(desc(.hat)) %>% 
  select(Country = country,
         `Leverage of country` = .hat,
         `Fem in bus (Actual)` = mean_fem_bus,
         `Fem in bus (Predicted)` = .fitted)  %>% 
  kbl(full_width = F) %>%
  kable_material_dark()

Next, we can look at Cook’s Distance. This is an estimate of the influence of a data point.  According to statisticshowto website, Cook’s D is a combination of each observation’s leverage and residual values; the higher the leverage and residuals, the higher the Cook’s distance.

  1. If a data point has a Cook’s distance of more than three times the mean, it is a possible outlier
  2. Any point over 4/n, where n is the number of observations, should be examined
  3. To find the potential outlier’s percentile value using the F-distribution. A percentile of over 50 indicates a highly influential point
fem_bus_pred %>% 
  mutate(fh_category = cut(mean_fh, 
breaks =  5,
  labels = c("full demo ", "high", "middle", "low", "no demo"))) %>%  
  mutate(outlier = ifelse(.cooksd > 4/length(fem_bus_pred), 1, 0)) %>% 
  ggplot(aes(x = .fitted, y = .resid)) +
  geom_point(aes(color = fh_category), size = 4, alpha = 0.6) + 
  ggrepel::geom_text_repel(aes(label = ifelse(outlier == 1, country, NA))) + 
  labs(x ='', y = '', title = 'Influential Outliers') + 
  bbplot::bbc_style() 

We can decrease from 4 to 0.5 to look at more outliers that are not as influential.

Also we can add a horizontal line at zero to see how the spread is.

fem_bus_pred %>% 
  mutate(fh_category = cut(mean_fh, breaks =  5,
labels = c("full demo ", "high", "middle", "low", "no demo"))) %>%  
  mutate(outlier = ifelse(.cooksd > 0.5/length(fem_bus_pred), 1, 0)) %>% 
  ggplot(aes(x = .fitted, y = .resid)) +
  geom_point(aes(color = fh_category), size = 4, alpha = 0.6) + 
  geom_hline(yintercept = 0, color = "#20948b", size = 2, alpha = 0.5) + 
  ggrepel::geom_text_repel(aes(label = ifelse(outlier == 1, country, NA)), size = 6) + 
  labs(x ='', y = '', title = 'Influential Outliers') + 
  bbplot::bbc_style() 

To look at the model-level data, we can use the tidy()function

fem_bus_tidy <- broom::tidy(fem_bus_lm)

And glance() to examine things such as the R-Squared value, the overall resudial standard deviation of the model (sigma) and the AIC scores.

broom::glance(fem_bus_lm)

An R squared of 0.55 is not that hot ~ so this model needs a fair bit more work.

We can also use the broom packge to graph out the assumptions of the linear model. First, we can check that the residuals are normally distributed!

fem_bus_pred %>% 
  ggplot(aes(x = .resid)) + 
  geom_histogram(bins = 15, fill = "#20948b") + 
  labs(x = '', y = '', title = 'Distribution of Residuals') +
  bbplot::bbc_style()

Next we can plot the predicted versus actual values from the model with and without the outliers.

First, all countries, like we did above:

fem_bus_pred %>%
  mutate(fh_category = cut(mean_fh, breaks =  5,
  labels = c("full demo ", "high", "middle", "low", "no demo"))) %>%         ggplot(aes(x = .fitted, y = mean_fem_bus)) + 
  geom_point(aes(color = fh_category), size = 4, alpha = 0.6) + 
  geom_smooth(method = "loess", alpha = 0.2, color = "#20948b") + 
  bbplot::bbc_style() + 
  labs(x = '', y = '', title = "Fitted values versus actual values")

And how to plot looks like if we drop the outliers that we spotted earlier,

fem_bus_pred %>%
  filter(country != "Eritrea") %>% 
   filter(country != "Belarus") %>% 
  mutate(fh_category = cut(mean_fh, breaks =  5,
                           labels = c("full demo ", "high", "middle", "low", "no demo"))) %>%         ggplot(aes(x = .fitted, y = mean_fem_bus)) + 
  geom_point(aes(color = fh_category), size = 4, alpha = 0.6) + 
  geom_smooth(method = "loess", alpha = 0.2, color = "#20948b") + 
  bbplot::bbc_style() + 
  labs(x = '', y = '', title = "Fitted values versus actual values")

Running tidy t-tests with the infer package in R

Packages we will need:

library(tidyverse)
library(tidyr)
library(infer)
library(bbplot)
library(ggthemes)

For this t-test, we will compare US millenials and non-millenials and their views of the UK’s influence in the world.

The data will come from Chicago Council Survey of American Public Opinion on U.S. Foreign Policy

Click here to download 2017 policy survey data

The survey investigates American public opinion on foreign policy. It focuses on respondents’ opinions of the United States’ leadership role in the world and the challenges the country faces domestically and internationally.

The question on the UK’s influence asks how much influence you think the UK has in the world. Please answer on a 0 to 10 scale; with 0 meaning they are not at all influential and 10 meaning they are extremely influential.

First we select and recreate the variables

fp %>%
  select(
    milennial = XMILLENIALSSAMPLEFLAG,
    uk_influence = Q50_10) %>%
  separate(
    col = milennial,
    into = c("milennial_num", "milennial_char"),
    sep = '[)]',
    remove = TRUE) %>% 
  mutate(
     uk_influence = as.character(uk_influence),
     uk_influence = parse_number(uk_influence)) %>% 
  filter(uk_influence != -1) %>% 
  tidyr::drop_na(milennial_char) -> mil_fp

With the infer package, we can run a t-test:

mil_fp %>% 
  t_test(formula = uk_influence ~ milennial_char,
         alternative = "less")%>% 
  kable(format = "html")
statistic t_df p_value alternative estimate lower_ci upper_ci
-3.048249 1329.469 0.0011736 less -0.3274509 -Inf -0.1506332

There is a statistically significant difference between milennials and non-milennials.

We can graph a box plot.

mil_fp %>% 
  ggplot(mapping = aes(x = milennial_char,
                       y = uk_influence,
                       fill = milennial_char)) +
  geom_jitter(aes(color = milennial_char),
              size = 2, alpha = 0.5, width = 0.3) +
  geom_boxplot(alpha = 0.4) +
  coord_flip() + bbplot::bbc_style() +
  scale_fill_manual(values = my_palette) + 
  scale_color_manual(values = my_palette)

And a quick graph to compare UK with other countries: Germany and South Korea

mil_fp %>% 
  select(milennial_char, uk_influence, sk_influence, ger_influence) %>% 
  pivot_longer(!milennial_char, names_to = "survey_question", values_to = "response")  %>% 
  group_by(survey_question, response) %>% 
  summarise(n = n()) %>%
  mutate(freq = n / sum(n)) %>% 
  ungroup() %>% 
  filter(!is.na(response)) %>% 
  mutate(survey_question = case_when(survey_question == "uk_influence" ~ "UK",
survey_question == "ger_influence" ~ "Germany",
survey_question == "sk_influence" ~ "South Korea",
TRUE ~ as.character(survey_question))) %>% 
  ggplot() +
  geom_bar(aes(x = forcats::fct_reorder(survey_question, freq), 
               y = freq, fill = as.factor(response)), 
           color = "#e5e5e5", 
           size = 2, 
           position = "stack",
           stat = "identity") + 
  coord_flip() + 
  scale_fill_brewer(palette = "RdBu") + 
  ggthemes::theme_fivethirtyeight() + 
  ggtitle("View of Influence in the world?") +
  theme(legend.title = element_blank(),
        legend.position = "top",
        legend.key.size = unit(0.78, "cm"),
        text = element_text(size = 25),
        legend.text = element_text(size = 20))