How to download OECD datasets in R

Packages we will need:

library(OECD)
library(tidyverse)
library(magrittr)
library(janitor)
library(devtools)
library(readxl)
library(countrycode)
library(scales)
library(ggflags)
library(bbplot)

In this blog post, we are going to look at downloading data from the OECD statsitics and data website.

The Organisation for Economic Co-operation and Development (OECD) provides analysis, and policy recommendations for 38 industrialised countries.

Angry Work GIF by Jess - Find & Share on GIPHY

The 38 countries in the OECD are:

  • Australia
  • Austria
  • Belgium
  • Canada
  • Chile
  • Colombia
  • Czech Republic
  • Denmark
  • Estonia
  • Finland
  • France
  • Germany
  • Hungary
  • Iceland
  • Ireland
  • Israel
  • Italy
  • Japan
  • South Korea
  • Latvia
  • Lithuania
  • Luxembourg
  • Mexico
  • Netherland
  • New Zealand
  • Norway
  • Poland
  • Portugal
  • Slovakia
  • Slovenia
  • Spain
  • Sweden
  • Switzerland
  • Turkey
  • United Kingdom
  • United States
  • European Union

We can download the OCED data package directly from the github repository with install_github()

install_github("expersso/OECD")
library(OECD)

The most comprehensive tutorial for the package comes from this github page. Mostly, it gives a fair bit more information about filtering data

We can look at the all the datasets that we can download from the website via the package with the following get_datasets() function:

titles <- OECD::get_datasets()

This gives us a data.frame with the ID and title for all the OECD datasets we can download into the R console, as we can see below.

In total there are 1662 datasets that we can download.

These datasets all have different variable types, countries, year spans and measurement values. So it is important to check each dataset carefully when we download them.

We can filter key phrases to subset datasets:

 titles %>%  
         filter(grepl("oda", title, ignore.case = TRUE)) %>% View

In this blog, we will graph out the Official Development Financing (ODF) for each country.

Official Development Financing measures the sum of RECEIVED (NOT DONATED) aid such as:

  • bilateral ODA aid
  • concessional and non-concessional resources from multilateral sources
  • bilateral other official flows made available for reasons unrelated to trade

Before we can charge into downloading any dataset, it is best to check out the variables it has. We can do that with the get_data_structure() function:

get_data_structure("REF_TOTAL_ODF") %>% 
       str(., max.level = 2)
 $ VAR_DESC       :'data.frame':	10 obs. of  2 variables:
  ..$ id         : chr [1:10] "RECIPIENT" "PART" "AMOUNTTYPE" "TIME" ...
  ..$ description: chr [1:10] "Recipient" "Part" "Amount type" "Year" ...

 $ RECIPIENT      :'data.frame':	301 obs. of  2 variables:
  ..$ id   : chr [1:301] "10200" "10100" "10010" "71" ...
  ..$ label: chr [1:301] "All Recipients, Total" "Developing Countries, Total" "Europe, Total" "Albania" ...

 $ PART           :'data.frame':	2 obs. of  2 variables:
  ..$ id   : chr [1:2] "1" "2"
  ..$ label: chr [1:2] "1 : Part I - Developing Countries" "2 : Part II - Countries in Transition"

 $ AMOUNTTYPE     :'data.frame':	2 obs. of  2 variables:
  ..$ id   : chr [1:2] "A" "D"
  ..$ label: chr [1:2] "Current Prices" "Constant Prices"

 $ TIME           :'data.frame':	62 obs. of  2 variables:
  ..$ id   : chr [1:62] "1960" "1961" "1962" "1963" ...
  ..$ label: chr [1:62] "1960" "1961" "1962" "1963" ...

We will clean up the ODF dataset with the clean_names() function from janitor package.

aid <- get_dataset("REF_TOTAL_ODF")  %>% 
  janitor::clean_names()  %>%
  select(recipient, aid = obs_value, time)

One problem with this dataset is that we only have the DAC country codes in this dataset.

We will need to read in and merge the country code variables into the aid dataset.

dac_code <- readxl::read_excel(file.choose())

We can then clean up the DAC codes to merge with the aid data.

dac_code %<>%
    janitor::clean_names()  %>% 
    mutate(cown = countrycode(recipient_name_e, "country.name", "cown")) %>% 
    select(recipient_code,
         year, 
         cown,
         country = recipient_name_e,
         group_id, 
         dev_group = group_name_e,
         p_group = group_name_f,
         wb_group)

And merge with left_join()

aid %<>% 
  mutate(recipient_code = parse_number(recipient)) %>%  
  left_join(dac_code, by = c("recipient_code" = "recipient_code")) 

Next we can sum up the aid that each country received since 2000.

aid %>% 
  filter(year > 1999) %>%  
  filter(!is.na(country)) %>% 
  mutate(aid = parse_number(aid)) %>% 
  mutate(country = case_when(country == "Syrian Arab Republic" ~ "Syria", 
                             country == "T?rkiye" ~ "Turkey",
                             country == "China (People's Republic of)" ~ "China",
                             country == "Democratic Republic of the Congo" ~ "DR Congo",
                             TRUE ~ as.character(country))) %>% 
  group_by(country) %>% 
  summarise(total_aid = sum(aid, na.rm = TRUE)) %>% 
  ungroup() %>% 
  mutate(iso2 = tolower(countrycode(country, "country.name", "iso2c"))) %>% 
  filter(total_aid > 150000) %>% 
  ggplot(aes(x = reorder(country, total_aid),
             y = total_aid)) + 
  geom_bar(stat = "identity", 
           width = 0.7, 
           color = "#0a85e5", 
           fill = "#0a85e5") +
  ggflags::geom_flag(aes(x = country, y = -1, country = iso2), size = 8) +
  bbplot::bbc_style() + 
  scale_y_continuous(labels = scales::comma_format()) +
  coord_flip() + 
  labs(x = "ODA received", y = "", title = "Official Development Financing (ODF)", subtitle = "OECD DAC (2000 - 2021)")

The TIME_FORMAT can be any of the following types:

  • ‘P1Y’ for annual
  • ‘P6M’ for bi-annual
  • ‘P3M’ for quarterly
  • ‘P1M’ for monthly data.

To access each countries in the datasets, we can use the following codes

oecd_ios3 <- c("AUS", "AUT", "BEL", "CAN", "CHL", "COL", "CZE",
               "DNK", "EST", "FIN", "FRA", "DEU", "GRC", "HUN",
               "ISL", "IRL", "ISR", "ITA", "JPN", "KOR", "LVA", 
               "LTU", "LUX", "MEX", "NLD", "NZL", "NOR", "POL",
               "PRT", "SVK", "SVN", "ESP", "SWE", "CHE", "TUR",
               "GBR", "USA")

Alternatively, we can use only the EU countries that are in the OECD.

eu_oecd_iso3 <- c("AUT", "BEL", "CZE", "DNK", "EST", "FIN", 
                  "FRA", "DEU", "GRC", "HUN", "IRL", "ITA",
                  "LVA", "LTU", "LUX", "NLD", "POL", "PRT",
                  "SVK", "SVN", "ESP", "SWE")
sal_raw %>% 
  janitor::clean_names() %>% 
  filter(age == "Y25T64") %>% 
  filter(grade == "TE") %>% 
  filter(indicator == "NAT_ACTL_YR") %>% 
  filter(isc11 == "L1") %>% 
  filter(sex == "T") %>% 
  select(country, year = time, obs_value) -> sal
Advertisement

Create infographics with the Irish leader dataset in R and Canva

Click here to download the Irish leader datatset. This file details information on all Taoisigh since 1922.

Source: Wikipedia

Tentative Codebook

Variable NameVariable Description
noTaoiseach number
nameName
partyPolitical party
constituencyElectoral constituency
bornDate of birth
diedDate of death
first_electedDate first entered the Dail
entered_officeDate entering office of Taoiseach
left_officeDate leaving office of Taoiseach
left_dailDate left the Dail
cum_daysTotal number of days in Dail
cum_yearsTotal number of years in Dail
second_levelSecondary school Taoiseach attended
third_levelUniversity Taoiseach attended
periodNumber of times the person was Taoiseach
before_after_taoiseachTitle of cabinet positions held by the Taoiseach when he was not holding office of Taoiseach
while_taoiseachTitle of cabinet positions held by the Taoiseach when he was in office as Taoiseach
no_pos_before_afterNumber of cabinet positions the man held when he was not holding office of Taoiseach
no_pos_durNumber of cabinet positions the man held when he was Taoiseach
county_bornThe county the Taoiseach was born in
ageAge of Taoiseach
age_enterAge the man entered office of Taoiseach
genderGender

Packages we will need:

library(tidyverse)
library(ggthemes)
library(readr)
library(sf)
library(tmap)


With the dataset, we can add map data and plot the 26 counties of Ireland.

If you follow this link below, you can download county map data from the following website by Chris Brundson

https://rpubs.com/chrisbrunsdon/part1

Thank you to Chris for the tutorial and data access!

Read in the simple features data with the st_read() from the sf package.

setwd("C:/Users/my_name/Desktop")

county_geom <- sf::st_read("counties.json") %>% 
   clean_names() %>% 
   mutate(county = stringr::str_to_title(county))

Next we count the number of counties that have given Ireland a Taoiseach with the group_by() and count() functions.

One Taoiseach, Eamon DeValera, was born in New York City, so he will not be counted in the graph.

Sorry Dev.

Sad Friends Tv GIF - Find & Share on GIPHY

We can join the Taoisech dataset to the county_geom dataframe by the county variable. The geometric data has the counties in capital letters, so we convert tolower() letters.

Add the geometry variable in the main ggplot() function.

We can play around with the themes arguments and add the theme_map() from the ggthemes package to get the look you want.

I added a few hex colors to indicate the different number of countries.

If you want a transparent background, we save it with the ggsave() function and set the bg argument to “transparent”

full_taois %>% 
  select(county = county_born, everything()) %>% 
  distinct(name, .keep_all = TRUE) %>% 
  group_by(county) %>% 
  count() %>% 
  ungroup() %>% 
  right_join(county_geom, by = c("county" = "county")) %>%
  replace(is.na(.), 0) %>% 
  ggplot(aes(geometry = geometry, fill = factor(n))) +  
  geom_sf(linewidth = 1, color = "white") +
  ggthemes::theme_map() + 
  theme(panel.background = element_rect(fill = 'transparent'),  
    legend.title = element_blank(),
    legend.text = element_text(size = 20) )  + 
scale_fill_manual(values = c("#8d99ae", "#a8dadc", "#457b9d", "#e63946", "#1d3557")) 

ggsave('county_map.png', county_map, bg = 'transparent')

Counties that have given us Taoisigh

Source: Wikipedia

Next we can graph the ages of the Taoiseach when they first entered office. With the reorder() function, we can compare how old they were.

full_taois %>%
  mutate(party = case_when(party == "Cumann na nGaedheal" ~ "CnG",
                           TRUE ~ as.character(party))) %>% 
  distinct(name, .keep_all = TRUE) %>% 
  mutate(age_enter = round(age_enter, digits = 0)) %>% 
  ggplot(aes(x = reorder(name, age_enter),
             y = age_enter,
             fill = party)) + 
  geom_bar(stat = "identity") +
  coord_flip() + 
  scale_fill_manual(values = c( "#8e2420","#66bb66","#6699ff")) + 
  theme(text = element_text(size = 40),
    axis.title.x = element_blank(), 
    axis.title.y = element_blank(), 
    panel.background = element_rect(fill = 'transparent'),  
    plot.background = element_rect(fill = 'transparent', color = NA), 
    panel.grid.major = element_blank(), 
    panel.grid.minor = element_blank(),
    legend.background = element_rect(fill = 'transparent'), #transparent legend bg
    legend.key.size = unit(2, 'cm'),
    legend.key.height = unit(2, 'cm'),
    legend.key.width = unit(2, 'cm'), 
    legend.title = element_blank(),
    legend.text = element_text(size = 20) ) 

ggsave('age_chart.png', age_chart, bg = 'transparent')

Ages of the Taoiseach entering office for the first time

Source: Wikipedia

We can calculate to see which party has held the office of Taoiseach the longest with a special, but slightly mad-looking pie chart

Click here to learn more about creating these plots.

full_taois %>% 
  distinct(name, .keep_all = TRUE) %>% 
  group_by(party) %>% 
  summarise(total_cum = sum(cum_days)) %>% 
    ggplot(aes(reorder(total_cum, party), total_cum, fill = as.factor(party))) + 
  geom_bar(stat = "identity") + 
  coord_polar("x", start = 0, direction = - 1)  + 
  scale_fill_manual(values = c( "#8e2420","#66bb66","#6699ff")) + 
  ggthemes::theme_map()

Number of years each party held the office of Taoiseach

Source: Wikipedia

Fianna Fail has held the office over twice as long as Fine Fail and much more than the one term of W Cosgrove (the only CnG Taoiseach)

Last we can create an icon waffle plots. We can use little man icons to create a waffle plot of all the men (only men) in the office, colored by political party.

I got the code and tutorial for making these waffle plots from the following website:

https://www.listendata.com/2019/06/create-infographics-with-r.html

It was very helpful in walking step by step through how to download the FontAwesome icons into the correct font folder on the PC. I had a heap of issues with the wrong versions of the htmltools.

remotes::install_github("JohnCoene/echarts4r")

remotes::install_github("hrbrmstr/waffle")

devtools::install_github("JohnCoene/echarts4r.assets")

remotes::install_github("hrbrmstr/waffle")

library(echarts4r)
library(extrafont)
library(showtext)
library(magrittr)
library(echarts4r.assets)
library(htmltools)
library(waffle)

extrafont::font_import(path = "C:/Users/my_name/Desktop",  pattern = "fa-", prompt =  FALSE)

extrafont::loadfonts(device="win")

font_add(family = "FontAwesome5Free-Solid", regular = "C:/Users/my_name/Desktop/fa-solid-900.ttf")
font_add(family = "FontAwesome5Free-Regular", regular = "C:/Users/my_name/Desktop/fa-regular-400.ttf")
font_add(family = "FontAwesome5Brands-Regular", regular = "C:/Users/my_name/Desktop/fa-brands-400.ttf")

showtext_auto()

Next we will find out the number of Taoisigh from each party:

And we fill a vector of values into the waffle() function. We can play around with the number of rows. Three seems like a nice fit for the number of icons (glyphs).

Also, we choose the type of glyph image we want with the the use_glyph() argument.

The options are the glyphs that come with the Font Awesome package we downloaded with extrafonts.

waffle(
  c( Cumann na nGaedheal = 1      ` = 1,
      `Fianna Fail = 8    ` = 8, 
      `Fine Gael = 6    ` = 6), 
  rows = 3, 
  colors = c("#8e2420", "#66bb66",  "#6699ff"),
  use_glyph = "male", 
  glyph_size = 25, 
  legend_pos = "bottom")

Click below to download the infographic that was edited and altered with Canva.com.

Jimmy Fallon Dancing GIF by The Tonight Show Starring Jimmy Fallon - Find & Share on GIPHY

How to create semi-circle parliament graphs with the ggparliament package in R

Packages we will need:

library(tidyverse)
library(forcats)
library(ggparliament)

Check out part 1 of this blog where you can follow along how to scrape the data that we will use in this blog. It will create a dataset of the current MPs in the Irish Dail.

In this blog, we will use the ggparliament package, created by Zoe Meers.

The Best Yes GIF - Find & Share on GIPHY

With this dataset of the 33rd Dail, we will reduce it down to get the number of seats that each party holds.

If we don’t want to graph every party, we can lump most of the smaller parties into an “other” category. We can do this with the fct_lump_n() function from the forcats package. I want the top five biggest parties only in the graph. The rest will be colored as “Other”.

Click here to read more about the forcats pacakge and dealing with factors in R.

dail_33 %>% 
  mutate(party_groups  = fct_lump_n(party, n = 5,
         other_level = "Other"))-> dail_lump_count

Next we want to count the number of members per party.

dail_lump_count %>% 
  group_by(party_groups) %>% 
  count() %>%  
  arrange(desc(n)) -> dail_count
  <fct>        <int>
1 Fianna Fail     38
2 Sinn Fein       37
3 Fine Gael       35
4 Independent     19
5 Other           19
6 Green Party     12

Before we graph, I found the hex colors that represent each of the biggest Irish political party. We can create a new party color variables with the case_when() function and add each color.

dail_count %<>% 
  mutate(party_color = case_when(party_groups == "Fianna Fail" ~ "#66bb66",
                                 party_groups == "Fine Gael" ~ "#6699ff",
                                 party_groups == "Green Party" ~ "#44532a",
                                 party_groups == "Independent" ~ "#8e2420",
                                 party_groups == "Sinn Fein" ~ "#326760",
                                 party_groups == "Other" ~ "#ee9f27"))

Now we can dive into the ggparliament package.

We use the parliamenet_data() function to create coordinates for our graph: these are the x and y variables we will plot out.

We feed in the data.frame of all the seat counts into the election_data argument.

We specifiy the type as “semi-circle“. Other options are “horseshoe” and “opposing_benches“.

We can change how many circles we want stacked on top of each other.

I tried it with three and it looked quite strange. So play around with this parl_rows argument to see what suits your data best

And last we feed in the number of seats that each party has with the n we summarised above.

dail_33_coord <- parliament_data(election_data = dail_count,
                                 type = "semicircle", 
                                 parl_rows = 6,  
                                 party_seats = dail_count$n) 

If we view the dail_33_coord data.frame we can see that the parliament_data() function calculated new x and y coordinate variables for the semi-circle graph.

I don’t know what the theta variables is for… But there it is also … maybe to make circular shapes?

We feed the x and y coordinates into the ggplot() function and then add the geom_parliament_seat() layer to produce our graph!

Click here to check out the PDF for the ggparliament package

dail_33_coord %>% 
  ggplot(aes(x = x,
             y = y,
             colour = party_groups)) +
  geom_parliament_seats(size = 20) -> dail_33_plot

And we can make it look more pretty with bbc_style() plot and colors.

Click here to read more about the BBC style graphs.

dail_33_plot +  bbplot::bbc_style() + 
  ggtitle("33rd Irish Parliament") +
  theme(text = element_text(size = 50),
                      legend.title = element_blank(),
                      axis.text.x = element_blank(),
                      axis.text.y = element_blank()) +  
  scale_colour_manual(values = dail_33_coord$party_color,
                    limits = dail_33_coord$party_groups)
Clueless Movie Cherilyn Horowitz GIF - Find & Share on GIPHY

Create a dataset of Irish parliament members

library(rvest)
library(tidyverse)
library(toOrdinal)
library(magrittr)
library(genderizeR)
library(stringi)

This blogpost will walk through how to scrape and clean up data for all the members of parliament in Ireland.

Or we call them in Irish, TDs (or Teachtaí Dála) of the Dáil.

We will start by scraping the Wikipedia pages with all the tables. These tables have information about the name, party and constituency of each TD.

On Wikipedia, these datasets are on different webpages.

This is a pain.

However, we can get around this by creating a list of strings for each number in ordinal form – from1st to 33rd. (because there have been 33 Dáil sessions as of January 2023)

We don’t need to write them all out manually: “1st”, “2nd”, “3rd” … etc.

Instead, we can do this with the toOrdinal() function from the package of the same name.

dail_sessions <- sapply(1:33,toOrdinal)

Next we can feed this vector of strings with the beginning of the HTML web address for Wikipedia as a string.

We paste the HTML string and the ordinal number strings together with the stri_paste() function from the stringi package.

This iterates over the length of the dail_sessions vector (in this case a length of 33) and creates a vector of each Wikipedia page URL.

dail_wikipages <- stri_paste("https://en.wikipedia.org/wiki/Members_of_the_",
           dail_sessions, "_D%C3%A1il")

Now, we can take the most recent Dáil session Wikipedia page and take the fifth table on the webpage using `[[`(5)

We rename the column names with select().

And the last two mutate() lines reomve the footnote numbers in ( ) [ ] brackets from the party and name variables.

dail_wikipages[33] %>%  
  read_html() %>%
  html_table(header = TRUE, fill = TRUE) %>% 
  `[[`(5) %>% 
  rename("ble" = 1, "party" = 2, "name" = 3, "constituency" = 4) %>% 
  select(-ble) %>% 
  mutate(party = gsub(r"{\s*\([^\)]+\)}","",as.character(party))) %>% 
  mutate(name = sub("\\[.*", "", name)) -> dail_33

Last we delete the first row. That just contais a duplicate of the variable names.

dail_33 <- dail_33[-1,]

We want to delete the fadas (long accents on Irish words). We can do this across all the character variables with the across() function.

The stri_trans_general() converts all strings to LATIN ASCII, which turns string to contain only the letters in the English language alphabet.

dail_33 %<>% 
  mutate(across(where(is.character), ~ stri_trans_general(., id = "Latin-ASCII"))) 

We can also separate the first name from the second names of all the TDs and create two variables with mutate() and separate()

dail_33 %<>% 
  mutate(name = str_replace(name, "\\s", "|")) %>% 
  separate(name, into = c("first_name", "last_name"), sep = "\\|") 

With the first_name variable, we can use the new pacakge by Kalimu. This guesses the gender of the name. Later, we can track the number of women have been voted into the Dail over the years.

Of course, this will not be CLOSE to 100% correct … so later we will have to check each person manually and make sure they are accurate.

devtools::install_github("kalimu/genderizeR")

gender = findGivenNames(dail_33$name, progress = TRUE)

gender %>% 
  select(probability, gender)  -> gen_variable

gen_variable %<>% 
  select(name, gender) %>% 
  mutate(name = str_to_sentence(name))

dail_33 %<>% 
  left_join(gen_variable, by = "name") 

Create date variables and decade variables that we can play around with.

dail_df$date_2 <- as.Date(dail_df$date, "%Y-%m-%d")

dail_df$year <- format(dail_df$date_2, "%Y")

dail_df$month <- format(dail_df$date_2, "%b")

dail_df %>% 
  mutate(decade = substr(year, 1, 3)) %>% 
  mutate(decade = paste0(decade, "0s"))

In the next blog, we will graph out the various images to explore these data in more depth. For example, we can make a circle plot with the composition of the current Dail with the ggparliament package.

We can go into more depth with it in the next blog… Stay tuned.

Cleaning up messy World Bank data

Packages we will need:

library(tidyverse)
library(tidyr)
library(janitor)
library(magrittr)
library(democracyData)
library(countrycode)
library(ggimage)

When you come across data from the World Bank, often it is messy.

So this blog will go through how to make it more tidy and more manageable in R

For this blog, we will look at World Bank data on financial aid. Specifically, we will be using values for net ODA received as percentage of each country’s GNI. These figures come from the Development Assistance Committee of the Organisation for Economic Co-operation and Development (DAC OECD).

If we look at the World Bank data downloaded from the website, we have a column for each year and the names are quite messy.

This data is wide form.

Unacceptable.

So we will change the data from wide to long data.

Instead of a column for each year, we will have a row for each country-year.

Before doing that, we can clean up the variable names with the janitor package function: clean_names().

sdg %<>% 
  clean_names() 

ALSO, before we pivot the dataset to longer format, we choose the variables we want to keep (i.e. only country, year and ODA value)

sdg %<>% 
  select(country_name, x1990_yr1990:x2015_yr2015) 

Now we are ready to turn the data from wide to long.

We can use the pivot_longer() function from the tidyr package.

Instead of 286 rows and 27 columns, we will ultimately end up with 6968 rows and only 3 columns.

Source: Garrick Aden-Buie’s (@grrrckTidy Animated Verbs

Thank you to Mr. Aden-Buie for your page visualising all the different ways to transform datasets with dplyr. Click the link to check out more.

Back to the pivoting, we want to create a row for each year, 1990, 1991, 1992 …. up to 2015

And we will have a separate cell for each value of the ODA variable for each country-year value.

In the pivot_longer() function we exclude the country names,

We want a new row for each year, so we make a “year” variable with the names_to() argument.

And we create a separate value for each ODA as a percentage of GNI with the values_to() argument.

sdg %>% 
  pivot_longer(!country_name, names_to = "year", 
               values_to = "oda_gni") -> oda

The year values are character strings, not numbers. So we will convert with parse_number(). This parses the first number it finds, dropping any non-numeric characters before the first number and all characters after the first number.

oda %>% 
     mutate(year = parse_number(year)) -> oda 

Next we will move from the year variable to ODA variable. There are many ODA values that are empty. We can see that there are 145 instances of empty character strings.

oda %>% 
  count(oda_gni) %>% 
  arrange(oda_gni)

So we can replace the empty character strings with NA values using the na_if() function. Then we can use the parse_number() function to turn the character into a string.

oda %>%
  mutate(oda_gni = na_if(oda_gni, "")) %>% 
  mutate(oda_gni = parse_number(oda_gni)) -> oda

Now we need to delete the year variables that have no values.

oda %<>% 
  filter(!is.na(year))

Also we need to delete non-countries.

The dataset has lots of values for regions that are not actual countries. If you only want to look at politically sovereign countries, we can filter out countries that do not have a Correlates of War value.

oda %<>%
  mutate(cow = countrycode(oda$country_name, "country.name", 'cown')) %>% 
  filter(!is.na(cow))

We can also make a variable for each decade (1990s, 2000s etc).

oda %>% 
  mutate(decade = substr(year, 1, 3)) %>% 
  mutate(decade = paste0(decade, "0s"))

And download data for countries’ region, continent and govenment regime. To do this we use the democracyData package and download the PACL dataset.

Click here to read more about this package.

pacl <- democracyData::redownload_pacl()

pacl %>% 
  select(cow = pacl_cowcode,
         year,
         region = un_region_name,
         continent = un_continent_name,
         demo_dummy = democracy,
         regime = regime
         ) -> pacl_subset

We use the left_join() function to join both datasets together with Correlates of War code and year variables.

oda %>% 
  left_join(pacl_subset, by = c("cow", "year")) -> oda_pacl

Now if we look at the dataset, we can see that it is much tidier and we can start analysing.

Below we can create a bar chart of the top ten countries that received the most aid as a percentage of their economic income (gross national income)

First we need to get the average oda per country with the group_by() and summarise() functions

oda_pacl %>%
  mutate(oda_gni = ifelse(is.na(oda_gni), 0, oda_gni)) %>%  
  group_by(country_name,region, continent) %>% 
  summarise(avg_oda = mean(oda_gni, na.rm = TRUE)) -> oda_mean

We use the slice() function to only have the top ten countries

oda_mean %>% 
  arrange(desc(avg_oda)) %>%
  ungroup() %>% 
  slice(1:10) -> oda_slice

We add an ISO code for each country for the flags

Click here to read more about the ggimage package

oda_slice %<>% 
  mutate(iso2 = countrycode(country_name, "country.name", "iso2c"))

And some nice hex colours

my_palette <- c( "#44bec7", "#ffc300", "#fa3c4c")

And finally, plot it out with ggplot()

oda_slice %>%
  ggplot(aes(x = reorder(country_name, avg_oda),
             y = avg_oda, fill = continent)) + 
  geom_bar(stat = "identity") + 
  ggimage::geom_flag(aes(image = iso2), size = 0.1)  +
  coord_flip() +
  scale_fill_manual(values = my_palette) + 
  labs(title = "ODA aid as % GNI ",
       subtitle = "Source: OECD DAC via World Bank",
       x = "Donor Country",
       y = "ODA per capita") + bbplot::bbc_style()

How to interpret linear models with the broom package in R

Packages you will need:

library(tidyverse)
library(magrittr)     # for pipes

library(broom)        # add model variables
library(easystats)    # diagnostic graphs

library(WDI)           # World Bank data
library(democracyData) # Freedom House data

library(countrycode)   # add ISO codes
library(bbplot)        # pretty themes
library(ggthemes)      # pretty colours
library(knitr)         # pretty tables
library(kableExtra)    # make pretty tables prettier

This blog will look at the augment() function from the broom package.

After we run a liner model, the augment() function gives us more information about how well our model can accurately preduct the model’s dependent variable.

It also gives us lots of information about how does each observation impact the model. With the augment() function, we can easily find observations with high leverage on the model and outlier observations.

For our model, we are going to use the “women in business and law” index as the dependent variable.

According to the World Bank, this index measures how laws and regulations affect women’s economic opportunity.

Overall scores are calculated by taking the average score of each index (Mobility, Workplace, Pay, Marriage, Parenthood, Entrepreneurship, Assets and Pension), with 100 representing the highest possible score.

Into the right-hand side of the model, our independent variables will be child mortality, military spending by the government as a percentage of GDP and Freedom House (democracy) Scores.

First we download the World Bank data and summarise the variables across the years.

Click here to read more about the WDI package and downloading variables from the World Bank website.

women_business = WDI(indicator = "SG.LAW.INDX")
mortality = WDI(indicator = "SP.DYN.IMRT.IN")
military_spend_gdp <- WDI(indicator = "MS.MIL.XPND.ZS")

We get the average across 60 ish years for three variables. I don’t want to run panel data regression, so I get a single score for each country. In total, there are 160 countries that have all observations. I use the countrycode() function to add Correlates of War codes. This helps us to filter out non-countries and regions that the World Bank provides. And later, we will use COW codes to merge the Freedom House scores.

women_business %>%
  filter(year > 1999) %>% 
  inner_join(mortality) %>% 
  inner_join(military_spend_gdp) %>% 
  select(country, year, iso2c, 
         fem_bus = SG.LAW.INDX, 
         mortality = SP.DYN.IMRT.IN,
         mil_gdp = MS.MIL.XPND.ZS)  %>% 
  mutate_all(~ifelse(is.nan(.), NA, .)) %>% 
  select(-year) %>% 
  group_by(country, iso2c) %>% 
  summarize(across(where(is.numeric), mean,  
   na.rm = TRUE, .names = "mean_{col}")) %>% 
  ungroup() %>% 
  mutate(cown = countrycode::countrycode(iso2c, "iso2c", "cown")) %>% 
  filter(!is.na(cown)) -> wdi_summary

Next we download the Freedom House data with the democracyData package.

Click here to read more about this package.

fh <- download_fh()

fh %>% 
  group_by(fh_country) %>% 
  filter(year > 1999) %>% 
  summarise(mean_fh = mean(fh_total, na.rm = TRUE)) %>% 
  mutate(cown = countrycode::countrycode(fh_country, "country.name", "cown")) %>% 
  mutate_all(~ifelse(is.nan(.), NA, .)) %>% 
  filter(!is.na(cown))  -> fh_summary

We join both the datasets together with the inner_join() functions:

fh_summary %>%
  inner_join(wdi_summary, by = "cown") %>% 
  select (-c(cown, iso2c, fh_country)) -> wdi_fh

Before we model the data, we can look at the correlation matrix with the corrplot package:

wdi_fh %>% 
  drop_na() %>% 
  select(-country)  %>% 
  select(`Females in business` = mean_fem_bus,
        `Mortality rate` = mean_mortality,
        `Freedom House` = mean_fh,
        `Military spending GDP` = mean_mil_gdp)  %>% 
  cor() %>% 
  corrplot(method = 'number',
           type = 'lower',
           number.cex = 2, 
           tl.col = 'black',
           tl.srt = 30,
           diag = FALSE)

Next, we run a simple OLS linear regression. We don’t want the country variables so omit it from the list of independent variables.

fem_bus_lm <- lm(mean_fem_bus ~ . - country, data = wdi_fh)
Dependent variable:
mean_fem_bus
mean_fh-2.807***
(0.362)
mean_mortality-0.078*
(0.044)
mean_mil_gdp-0.416**
(0.205)
Constant94.684***
(2.024)
Observations160
R20.557
Adjusted R20.549
Residual Std. Error11.964 (df = 156)
F Statistic65.408*** (df = 3; 156)
Note:*p<0.1; **p<0.05; ***p<0.01

We can look at some preliminary diagnostic plots.

Click here to read more about the easystat package. I found it a bit tricky to download the first time.

performance::check_model(fem_bus_lm)

The line is not flat at the beginning so that is not ideal..

We will look more into this later with the variables we create with augment() a bit further down this blog post.

None of our variables have a VIF score above 5, so that is always nice to see!

From the broom package, we can use the augment() function to create a whole heap of new columns about the variables in the model.

fem_bus_pred <- broom::augment(fem_bus_lm)

  • .fitted = this is the model prediction value for each country’s dependent variable score. Ideally we want them to be as close to the actual scores as possible. If they are totally different, this means that our independent variables do not do a good job explaining the variance in our “women in business” index.

  • .resid = this is actual dependent variable value minus the .fitted value.

We can look at the fitted values that the model uses to predict the dependent variable – level of women in business – and compare them to the actual values.

The third column in the table is the difference between the predicted and actual values.

fem_bus_pred %>% 
  mutate(across(where(is.numeric), ~round(., 2))) %>%
  arrange(mean_fem_bus) %>% 
  select(Country = country,
    `Fem in bus (Actual)` = mean_fem_bus,
    `Fem in bus (Predicted)` = .fitted,
    `Fem in bus (Difference)` = .resid,
                  `Mortality rate` = mean_mortality,
                  `Freedom House` = mean_fh,
                  `Military spending GDP` = mean_mil_gdp)  %>% 
  kbl(full_width = F) 
Country Leverage of country Fem in bus (Actual) Fem in bus (Predicted)
Austria 0.02 88.92 88.13
Belgium 0.02 92.13 87.65
Costa Rica 0.02 79.80 87.84
Denmark 0.02 96.36 87.74
Finland 0.02 94.23 87.74
Iceland 0.02 96.36 88.90
Ireland 0.02 95.80 88.18
Luxembourg 0.02 94.32 88.33
Sweden 0.02 96.45 87.81
Switzerland 0.02 83.81 87.78

And we can graph them out:

fem_bus_pred %>%
  mutate(fh_category = cut(mean_fh, breaks =  5,
  labels = c("full demo ", "high", "middle", "low", "no demo"))) %>%         ggplot(aes(x = .fitted, y = mean_fem_bus)) + 
  geom_point(aes(color = fh_category), size = 4, alpha = 0.6) + 
  geom_smooth(method = "loess", alpha = 0.2, color = "#20948b") + 
  bbplot::bbc_style() + 
  labs(x = '', y = '', title = "Fitted values versus actual values")

In addition to the predicted values generated by the model, other new columns that the augment function adds include:

  • .hat = this is a measure of the leverage of each variable.

  • .cooksd = this is the Cook’s Distance. It shows how much actual influence the observation had on the model. Combines information from .residual and .hat.

  • .sigma = this is the estimate of residual standard deviation if that observation is dropped from model

  • .std.resid = standardised residuals

If we look at the .hat observations, we can examine the amount of leverage that each country has on the model.

fem_bus_pred %>% 
  mutate(dplyr::across(where(is.numeric), ~round(., 2))) %>%
  arrange(desc(.hat)) %>% 
  select(Country = country,
         `Leverage of country` = .hat,
         `Fem in bus (Actual)` = mean_fem_bus,
         `Fem in bus (Predicted)` = .fitted)  %>% 
  kbl(full_width = F) %>%
  kable_material_dark()

Next, we can look at Cook’s Distance. This is an estimate of the influence of a data point.  According to statisticshowto website, Cook’s D is a combination of each observation’s leverage and residual values; the higher the leverage and residuals, the higher the Cook’s distance.

  1. If a data point has a Cook’s distance of more than three times the mean, it is a possible outlier
  2. Any point over 4/n, where n is the number of observations, should be examined
  3. To find the potential outlier’s percentile value using the F-distribution. A percentile of over 50 indicates a highly influential point
fem_bus_pred %>% 
  mutate(fh_category = cut(mean_fh, 
breaks =  5,
  labels = c("full demo ", "high", "middle", "low", "no demo"))) %>%  
  mutate(outlier = ifelse(.cooksd > 4/length(fem_bus_pred), 1, 0)) %>% 
  ggplot(aes(x = .fitted, y = .resid)) +
  geom_point(aes(color = fh_category), size = 4, alpha = 0.6) + 
  ggrepel::geom_text_repel(aes(label = ifelse(outlier == 1, country, NA))) + 
  labs(x ='', y = '', title = 'Influential Outliers') + 
  bbplot::bbc_style() 

We can decrease from 4 to 0.5 to look at more outliers that are not as influential.

Also we can add a horizontal line at zero to see how the spread is.

fem_bus_pred %>% 
  mutate(fh_category = cut(mean_fh, breaks =  5,
labels = c("full demo ", "high", "middle", "low", "no demo"))) %>%  
  mutate(outlier = ifelse(.cooksd > 0.5/length(fem_bus_pred), 1, 0)) %>% 
  ggplot(aes(x = .fitted, y = .resid)) +
  geom_point(aes(color = fh_category), size = 4, alpha = 0.6) + 
  geom_hline(yintercept = 0, color = "#20948b", size = 2, alpha = 0.5) + 
  ggrepel::geom_text_repel(aes(label = ifelse(outlier == 1, country, NA)), size = 6) + 
  labs(x ='', y = '', title = 'Influential Outliers') + 
  bbplot::bbc_style() 

To look at the model-level data, we can use the tidy()function

fem_bus_tidy <- broom::tidy(fem_bus_lm)

And glance() to examine things such as the R-Squared value, the overall resudial standard deviation of the model (sigma) and the AIC scores.

broom::glance(fem_bus_lm)

An R squared of 0.55 is not that hot ~ so this model needs a fair bit more work.

We can also use the broom packge to graph out the assumptions of the linear model. First, we can check that the residuals are normally distributed!

fem_bus_pred %>% 
  ggplot(aes(x = .resid)) + 
  geom_histogram(bins = 15, fill = "#20948b") + 
  labs(x = '', y = '', title = 'Distribution of Residuals') +
  bbplot::bbc_style()

Next we can plot the predicted versus actual values from the model with and without the outliers.

First, all countries, like we did above:

fem_bus_pred %>%
  mutate(fh_category = cut(mean_fh, breaks =  5,
  labels = c("full demo ", "high", "middle", "low", "no demo"))) %>%         ggplot(aes(x = .fitted, y = mean_fem_bus)) + 
  geom_point(aes(color = fh_category), size = 4, alpha = 0.6) + 
  geom_smooth(method = "loess", alpha = 0.2, color = "#20948b") + 
  bbplot::bbc_style() + 
  labs(x = '', y = '', title = "Fitted values versus actual values")

And how to plot looks like if we drop the outliers that we spotted earlier,

fem_bus_pred %>%
  filter(country != "Eritrea") %>% 
   filter(country != "Belarus") %>% 
  mutate(fh_category = cut(mean_fh, breaks =  5,
                           labels = c("full demo ", "high", "middle", "low", "no demo"))) %>%         ggplot(aes(x = .fitted, y = mean_fem_bus)) + 
  geom_point(aes(color = fh_category), size = 4, alpha = 0.6) + 
  geom_smooth(method = "loess", alpha = 0.2, color = "#20948b") + 
  bbplot::bbc_style() + 
  labs(x = '', y = '', title = "Fitted values versus actual values")

How to recreate Pew opinion graphs with ggplot2 in R

Packages we will need

library(HH)
library(tidyverse)
library(bbplot)
library(haven)

In this blog post, we are going to recreate Pew Opinion poll graphs.

This is the plot we will try to recreate on gun control opinions of Americans:

To do this, we will download the data from the Pew website by following the link below:

atp <- read.csv(file.choose())

We then select the variables related to gun control opinions

atp %>% 
  select(GUNPRIORITY1_b_W87:GUNPRIORITY2_j_W87) -> gun_df

I want to rename the variables so I don’t forget what they are.

Then, we convert them all to factor variables because haven labelled class variables are sometimes difficult to wrangle…

gun_df %<>%
  select(mental_ill = GUNPRIORITY1_b_W87,
         assault_rifle = GUNPRIORITY1_c_W87, 
         gun_database = GUNPRIORITY1_d_W87,
         high_cap_mag = GUNPRIORITY1_e_W87,
         gunshow_bkgd_check = GUNPRIORITY1_f_W87,
         conceal_gun =GUNPRIORITY2_g_W87,
         conceal_gun_no_permit = GUNPRIORITY2_h_W87,
         teacher_gun = GUNPRIORITY2_i_W87,
         shorter_waiting = GUNPRIORITY2_j_W87) %>% 
  mutate(across(everything()), haven::as_factor(.))

Also we can convert the “Refused” to answer variables to NA if we want, so it’s easier to filter out.

gun_df %<>% 
  mutate(across(where(is.factor), ~na_if(., "Refused")))

Next we will pivot the variables to long format. The new names variable will be survey_question and the responses (Strongly agree, Somewhat agree etc) will go to the new response variable!

gun_df %>% 
  pivot_longer(everything(), names_to = "survey_question", values_to = "response") -> gun_long

And next we calculate counts and frequencies for each variable

gun_long %<>% 
  group_by(survey_question, response) %>% 
  summarise(n = n()) %>%
  mutate(freq = n / sum(n)) %>% 
  ungroup() 

Then we want to reorder the levels of the factors so that they are in the same order as the original Pew graph.

gun_long %>% 
  mutate(survey_question = as.factor(survey_question))   %>% 
   mutate(survey_question_reorder = factor(survey_question, 
          levels =  c( 
           "conceal_gun_no_permit",
           "shorter_waiting",
           "teacher_gun",
           "conceal_gun",
           "assault_rifle",
           "high_cap_mag",
           "gun_database",
           "gunshow_bkgd_check",
           "mental_ill"
           ))) -> gun_reordered

And we use the hex colours from the original graph … very brown… I used this hex color picker website to find the right hex numbers: https://imagecolorpicker.com/en

brown_palette <- c("Strongly oppose" = "#8c834b",
                   "Somewhat oppose" = "#beb88f",
                   "Somewhat favor" = "#dfc86c",
                   "Strongly favor" = "#caa31e")

And last, we use the geom_bar() – with position = "stack" and stat = "identity" arguments – to create the bar chart.

To add the numbers, write geom_text() function with label = frequency within aes() and then position = position_stack() with hjust and vjust to make sure you’re happy with where the numbers are

gun_reordered %>% 
  filter(!is.na(response)) %>% 
  mutate(frequency = round(freq * 100), 0) %>% 
  ggplot(aes(x = survey_question_reorder, 
             y = frequency, fill = response)) +
  geom_bar(position = "stack",
           stat = "identity") + 
  coord_flip() + 
  scale_fill_manual(values = brown_palette) +
  geom_text(aes(label = frequency), size = 10, 
            color = "black", 
            position = position_stack(vjust = 0.5)) +
  bbplot::bbc_style() + 
  labs(title = "Broad support for barring people with mental illnesses 
       \n from obtaining guns, expanded background checks",
       subtitle = "% who", 
       caption = "Note: No answer resposes not shown.\n Source: Survey of U.S. adults conducted April 5-11 2021.") + 
  scale_x_discrete(labels = c(
    "Allowing people to carry conealed \n guns without a person",
    "Shortening waiting periods for people \n who want to buy guns leagally",
    "Allowing reachers and school officials \n to carry guns in K-12 school",
    "Allowing people to carry \n concealed guns in more places",
    "Banning assault-style weapons",
    "Banning high capacity ammunition \n magazines that hold more than 10 rounds",
    "Creating a federal government \n database to track all gun sales",
    "Making private gun sales \n subject to background check",
    "Preventing people with mental \n illnesses from purchasing guns"
    ))
Stephen Colbert Waiting GIF - Find & Share on GIPHY

Unfortunately this does not have diverving stacks from the middle of the graph

We can make a diverging stacked bar chart using function likert() from the HH package.

For this we want to turn the dataset back to wider with a column for each of the responses (strongly agree, somewhat agree etc) and find the frequency of each response for each of the questions on different gun control measures.

Then with the likert() function, we take the survey question variable and with the ~tilda~ make it the product of each response. Because they are the every other variable in the dataset we can use the shorthand of the period / fullstop.

We use positive.order = TRUE because we want them in a nice descending order to response, not in alphabetical order or something like that

gun_reordered %<>%
    filter(!is.na(response)) %>%  
  select(survey_question, response, freq) %>%  
  pivot_wider(names_from = response, values_from = freq ) %>%
  ungroup() %>% 
  HH::likert(survey_question ~., positive.order = TRUE,
            main =  "Broad support for barring people with mental illnesses
            \n from obtaining guns, expanded background checks")

With this function, it is difficult to customise … but it is very quick to make a diverging stacked bar chart.

Angry Stephen Colbert GIF by The Late Show With Stephen Colbert - Find & Share on GIPHY

If we return to ggplot2, which is more easy to customise … I found a solution on Stack Overflow! Thanks to this answer! The solution is to put two categories on one side of the centre point and two categories on the other!

gun_reordered %>% 
filter(!is.na(response)) %>% 
  mutate(frequency = round(freq * 100), 0) -> gun_final

And graph out

ggplot(data = gun_final, aes(x = survey_question_reorder, 
            fill = response)) +
  geom_bar(data = subset(gun_final, response %in% c("Strongly favor",
           "Somewhat favor")),
           aes(y = -frequency), position="stack", stat="identity") +
  geom_bar(data = subset(gun_final, !response %in% c("Strongly favor",
            "Somewhat favor")), 
           aes(y = frequency), position="stack", stat="identity") +
  coord_flip() + 
  scale_fill_manual(values = brown_palette) +
  geom_text(data = gun_final, aes(y = frequency, label = frequency), size = 10, color = "black", position = position_stack(vjust = 0.5)) +
  bbplot::bbc_style() + 
  labs(title = "Broad support for barring people with mental illnesses 
       \n from obtaining guns, expanded background checks",
       subtitle = "% who", 
       caption = "Note: No answer resposes not shown.\n Source: Survey of U.S. adults conducted April 5-11 2021.") + 
  scale_x_discrete(labels = c(
    "Allowing people to carry conealed \n guns without a person",
    "Shortening waiting periods for people \n who want to buy guns leagally",
    "Allowing reachers and school officials \n to carry guns in K-12 school",
    "Allowing people to carry \n concealed guns in more places",
    "Banning assault-style weapons",
    "Banning high capacity ammunition \n magazines that hold more than 10 rounds",
    "Creating a federal government \n database to track all gun sales",
    "Making private gun sales \n subject to background check",
    "Preventing people with mental \n illnesses from purchasing guns"
  ))
High Five Stephen Colbert GIF - Find & Share on GIPHY

Next to complete in PART 2 of this graph, I need to figure out how to add lines to graphs and add the frequency in the correct place

Examining Ireland’s foreign policy in pictures with R

Packages we will need:

library(peacesciencer)  
library(forcats)
library(ggflags)
library(tidyverse)
library(magrittr)
library(waffle)
library(bbplot)
library(rvest)

In January 2015, the Irish government published a review of Ireland’s foreign policy. The document, The Global Island: Ireland’s Foreign Policy for a Changing World offers a perspective on Ireland’s place in the world.

In this blog, we will graph out some of the key features of Ireland’ foreign policy and so we can have a quick overview of the key relationships and trends.

Excited Season 4 GIF by The Office - Find & Share on GIPHY

First, we will look at the aid that Ireland gives to foreign countries. This read.csv(file.choose()) will open up the file window and you can navigate to the file and data that you can download from DAC OECD website: https://data.oecd.org/oda/net-oda.htm

dac <- read.csv(file.choose())

We will filter only Ireland and clean the names with the clean_names() function from the janitor package:

dac %<>% 
  filter(Donor == "Ireland") %>% 
  clean_names()

And change the variables, adding the Correlates of War codes and cleaning up some of the countries’ names.

dac %<>% 
  mutate(cown = countrycode(recipient_2, "country.name", "cown"),
         aid_amount = value*1000000) %>%  
  select(country = recipient_2, cown,
         year, time, aid_type, value, aid_amount) %>%
  mutate(cown = ifelse(country == "West Bank and Gaza Strip", 6666,
         ifelse(country == "Serbia", 345, 
         ifelse(country == "Micronesia", 987,cown))))%>%
  filter(!is.na(cown)) 

Next we can convert dataframe to wider format so we have a value column for each aid type

dac %>% 
  distinct(country, cown, year, time, aid_type, value, .keep_all = TRUE)  %>%  
  pivot_wider(names_from = "aid_type", values_from = "aid_amount") %>% 
  mutate(across(where(is.numeric), ~ replace_na(., 0))) %>% 
  clean_names() -> dac_wider

And we graph out the three main types of aid:

dac_wider %>%
  group_by(year) %>% 
  summarise(total_humanitarian = sum(humanitarian_aid, na.rm = TRUE),
  total_technical = sum(technical_cooperation, na.rm = TRUE),
  total_development_food_aid = sum(development_food_aid)) %>% 
  ungroup() %>% 
  pivot_longer(!year, names_to = "aid_type", values_to = "aid_value") %>% 
  ggplot(aes(x = year, y = aid_value, groups = aid_type)) + 
  geom_line(aes(color = aid_type), size = 2, show_guide  = FALSE) +
  geom_point(aes(color = aid_type), fill = "white", shape = 21, size = 3, stroke = 2) +
  bbplot::bbc_style()  +
  scale_y_continuous(labels = scales::comma) + 
  scale_x_discrete(limits = c(2010:2018)) +
  labs(title = "Irish foreign aid by aid type (2010 - 2018)",
       subtitle = ("Source: OECD DAC")) +
  scale_color_discrete(name = "Aid type", 
        labels = c("Development and Food", "Humanitarian", "Technical"))

We will look at total ODA aid:

dac %>% 
  count(aid_type) %>% 
  arrange(desc(n)) %>% 
  knitr::kable(format = "html")
aid_type n
Imputed Multilateral ODA 2298
Memo: ODA Total, excl. Debt 1292
Memo: ODA Total, Gross disbursements 1254
ODA: Total Net 1249
Grants, Total 1203
Technical Cooperation 541
ODA per Capita 532
Humanitarian Aid 518
ODA as % GNI (Recipient) 504
Development Food Aid 9

And get some pretty hex colours:

pal_10 <- c("#001219","#005f73","#0a9396","#94d2bd","#e9d8a6","#ee9b00","#ca6702","#bb3e03","#ae2012","#9b2226")

And download some regime, democracy, region and continent data from the PACL datase with the democracyData() package

pacl <- redownload_pacl() 

pacl %<>% 
  mutate(regime_name = ifelse(regime == 0, "Parliamentary democracies",
         ifelse(regime == 1, "Mixed democracies",
         ifelse(regime == 2, "Presidential democracies",
         ifelse(regime == 3, "Civilian autocracies",
         ifelse(regime == 4, "Military dictatorships",
         ifelse(regime ==  5,"Royal dictatorships", regime))))))) %>%
  mutate(regime = as.factor(regime)) 

pacl %<>% 
  select(year, country = pacl_country, 
         democracy, regime_name,
         region_name = un_region_name, 
         continent_name = un_continent_name)

pacl %<>% 
  mutate(cown = countrycode(country, "country.name", "cown")) %>% 
  select(!country)

Summarise the total aid for each country across the years and choose the top 20 countries

dac %>% 
  filter(aid_type == "Memo: ODA Total, Gross disbursements") %>% 
  group_by(country) %>% 
  summarise(total_country_aid = sum(aid_amount, na.rm = TRUE)) %>% 
  ungroup() %>% 
  top_n(n = 20) %>% 
  mutate(cown = countrycode::countrycode(country, "country.name", "cown")) %>% 
  inner_join(pacl, by = "cown") %>%  
  mutate(region_name = ifelse(country == "West Bank and Gaza Strip", "Western Asia", region_name)) %>% 
  mutate(region_name = ifelse(region_name == "Western Asia", "Middle East", region_name)) %>% 
  mutate(country = ifelse(country == "West Bank and Gaza Strip", "Palestine",
  ifelse(country == "Democratic Republic of the Congo", "DR Congo",
  ifelse(country == "Syrian Arab Republic", "Syria", country)))) %>% 
  mutate(iso2 = tolower(countrycode::countrycode(country, "country.name", "iso2c"))) %>% 
  ggplot(aes(x = forcats::fct_reorder(country, total_country_aid), y = total_country_aid)) + 
  geom_bar(aes(fill = region_name), stat = "identity", width = 0.7) + 
  coord_flip() + bbplot::bbc_style() + 
  geom_flag(aes(x = country, y = -100, country = iso2), size = 12) +
  scale_fill_manual(values = pal_10) +
  labs(title = "Ireland's largest ODA foreign aid recipients, 2010 - 2018",
       subtitle = ("Source: OECD DAC")) + 
  xlab("") + ylab("") + 
  scale_x_continuous(labels = scales::comma)

We can make a waffle plot to look at the different types of regimes to which the Irish government gave aid over the decades

 dac %>% 
  mutate(decade = substr(year, 1, 3)) %>% 
  mutate(decade = paste0(decade, "0s")) %>% 
  group_by(decade) %>% 
  count(regime_name) %>% 
  ggplot(aes(fill = regime_name, values = n)) +
  geom_waffle(color = "white", size = 0.3, n_rows = 10, flip = TRUE) +
  facet_wrap(~decade, nrow = 1, strip.position = "bottom") + 
  bbplot::bbc_style()  +
  scale_fill_manual(values = pal_10) +
   scale_x_discrete(breaks = round(seq(0, 1, by = 0.2),3)) +
  labs(title = "Ireland's ODA foreign aid recipient regime types since 1945",
       subtitle = ("Source: OECD DAC"))  

Next, we will download dyadic foreign policy similarity measures from peacesciencer.

Peacesciencer package has tools and data sets for the study of quantitative peace science. 

Click here to read more about the peacesciencer package by Steven Miller

fp_similar_df <- peacesciencer::create_dyadyears() %>% 
  add_gwcode_to_cow() %>% 
  add_fpsim()	

I am only looking at dyadic foreign policy similarity with Ireland, so filter by Ireland’s Correlates of War code, 205.

Click here to find out all countries’ COW code

fp_similar_df %<>% 
  filter(ccode1 == 205)

Data on alliance portfolios comes from the Correlates of War and is used to calculate similarity of foreign policy positions (see Altfeld & Mesquita, 1979).

The assumption is that similar alliance portfolios are the result of similar foreign policy positions.

With increasing in level of commitment, the strength of alliance commitments can be:

  1. no commitment
  2. entente
  3. neutrality or nonaggression pact
  4. defense pact

We will map out alliance similarity. This will use the measurement calculated with Cohen’s Kappa. Check out Hage’s (2011) article to read more about the different ways to measure alliance similarity.

Next we can look at UN similarity.

The UN voting variable calculates three values:

1 = Yes

2 = Abstain

3 = No

Based on these data, if two countries in a similar way on the same UN resolutions, this is a measure of the degree to which dyad members’ foreign policy positions are similar.

fp_similarity_df %>% 
  mutate(country = countrycode::countrycode(ccode2, "cown", "country.name")) %>% 
  select(country, ccode2, year,
         un_similar = kappavv) %>% 
  filter(year > 1989) %>% 
  filter(!is.na(country)) %>%
  mutate(iso2 = tolower(countrycode::countrycode(country, "country.name", "iso2c"))) %>% 
  group_by(country) %>% 
  mutate(avg_un = mean(un_similar, na.rm = TRUE)) %>%
  distinct(country, avg_un, iso2, .keep_all = FALSE) %>% 
  ungroup() %>% 
  top_n(n = 10)  -> top_un_similar

And graph out the top ten

  top_un_similar %>%
  ggplot(aes(x = forcats::fct_reorder(country, avg_un), 
             y = avg_un)) + 
  geom_bar(stat = "identity",
           width = 0.7, 
           color = "#0a85e5", 
           fill = "#0a85e5") +
  ggflags::geom_flag(aes(x = country, y = 0, country = iso2), size = 15) +
  coord_flip() + bbplot::bbc_style()  +
  ggtitle("UN voting similarity with Ireland since 1990")

If we change the top_n() to negative, we can get the bottom 10

top_n(n = -10)

We can quickly scrape data about the EU countries with the rvest package


eu_members_html <- read_html("https://en.wikipedia.org/wiki/European_Union")
eu_members_tables <- eu_members_html %>% html_table(header = TRUE, fill = TRUE)

eu_member <- eu_members_tables[[6]]

eu_member %<>% 
  janitor::clean_names()

eu_member %>% distinct(state) %>%  pull(state) -> eu_state

Last we are going to look at globalization scores. The data comes from the the KOF Globalisation Index. This measures the economic, social and political dimensions of globalisation. Globalisation in the economic, social and political fields has been on the rise since the 1970s, receiving a particular boost after the end of the Cold War.

Click here for data that you can download comes from the KOF website

kof %>%
  filter(country %in% eu_state) -> kof_eu

And compare Ireland to other EU countries on financial KOF index scores. We will put Ireland in green and the rest of the countries as grey to make it pop.

Ireland appears to follow the general EU trends and is not an outlier for financial globalisation scores.

kof_eu %>% 
  ggplot(aes(x = year,  y = finance, groups = country)) + 
  geom_line(color = ifelse(kof_eu$country == "Ireland",     "#2a9d8f", "#8d99ae"),
  size = ifelse(kof_eu$country == "Ireland", 3, 2), 
  alpha = ifelse(kof_eu$country == "Ireland", 0.9, 0.3)) +
  bbplot::bbc_style() + 
  ggtitle("Financial Globalization in Ireland, 1970 to 2020", 
          subtitle = "Source: KOF")

References

Häge, F. M. (2011). Choice or circumstance? Adjusting measures of foreign policy similarity for chance agreement. Political Analysis19(3), 287-305.

Dreher, Axel (2006): Does Globalization Affect Growth? Evidence from a new Index of Globalizationcall_made, Applied Economics 38, 10: 1091-​1110.

How to tidy up messy Wikipedia data with dplyr in R

Packages we will need:

library(rvest)
library(magrittr)
library(tidyverse)
library(waffle)
library(wesanderson)
library(ggthemes)
library(countrycode)
library(forcats)
library(stringr)
library(tidyr)
library(janitor)
library(knitr)

To see another blog post that focuses on cleaning messy strings and dates, click here to read

We are going to look at Irish embassies and missions around the world. Where are the embassies, and which country has the most missions (including embassies, consulates and representational offices)?

Let’s first scrape the embassy data from the Wikipedia page. Here is how it looks on the webpage.

It is a bit confusing because Ireland does not have a mission in every country. Argentina, for example, is the embassy for Bolivia, Paraguay and Uruguay.

Also, there are some consulates-general and other mission types.

Some countries have more than one mission, such as UK, Canada, US etc. So we are going to try and clean up this data.

Click here to read more about scraping data with the rvest package

embassies_html <- read_html("https://en.wikipedia.org/wiki/List_of_diplomatic_missions_of_Ireland")

embassies_tables <- embassies_html %>% html_table(header = TRUE, fill = TRUE)

We will extract the data from the different continent tables and then bind them all together at the end.

africa_emb <- embassies_tables[[1]]

africa_emb %<>% 
  mutate(continent = "Africa")

americas_emb <- embassies_tables[[2]]

americas_emb %<>% 
  mutate(continent = "Americas")

asia_emb <- embassies_tables[[3]]

asia_emb %<>% 
  mutate(continent = "Asia")

europe_emb <- embassies_tables[[4]]

europe_emb %<>% 
  mutate(continent = "Europe")

oceania_emb <- embassies_tables[[5]]

oceania_emb %<>% 
  mutate(continent = "Oceania")

Last, we bind all the tables together by rows, with rbind()

ire_emb <- rbind(africa_emb, 
                 americas_emb,
                 asia_emb,
                 europe_emb,
                 oceania_emb)

And clean up the names with the janitor package

ire_emb %<>% 
  janitor::clean_names() 

There is a small typo with a hypen and so there are separate Consulate General and Consulate-General… so we will clean that up to make one single factor level.

ire_emb %<>% 
  mutate(mission = ifelse(mission == "Consulate General", "Consulate-General", mission))

We can count out how many of each type of mission there are

ire_emb %>% 
  group_by(mission) %>% 
  count() %>% 
  arrange(desc(n)) %>% 
  knitr::kable(format = "html")
mission n
Embassy 69
Consulate-General 17
Liaison office 1
Representative office 1

A quick waffle plot

ire_emb %>% 
  group_by(mission) %>%
  count() %>% 
  arrange(desc(n)) %>% 
  ungroup() %>% 
  ggplot(aes(fill = mission, values = n)) +
  geom_waffle(color = "white", size = 1.5, 
              n_rows = 20, flip = TRUE) + 
  bbplot::bbc_style() +
  scale_fill_manual(values= wes_palette("Darjeeling1", n = 4))

We can remove the notes in brackets with the sub() function.

Square brackets equire a regex code \\[.*

ire_emb %<>% 
  select(!ref) %>%
  mutate(host_country = sub("\\[.*", "", host_country))

We delete the subheadings from the concurrent_accreditation column with the str_remove() function from the stringr package

ire_emb %<>%
  mutate(concurrent_accreditation = stringr::str_remove(concurrent_accreditation, "International Organizations:\n")) %>% 
  mutate(concurrent_accreditation = stringr::str_remove(concurrent_accreditation, "Countries:\n"))

After that, we will tackle the columns with many countries. The many variables in one cell violates the principles of tidy data.

Tonight Show Help GIF by The Tonight Show Starring Jimmy Fallon - Find & Share on GIPHY

For example, we saw above that Argentina is the embassy for three other countries.

We will use the separate() function from the tidyr package to make a column for each country that shares an embassy with the host country.

This separate() function has six arguments:

First we indicate the column with will separate out with the col argument

Next with into, we write the new names of the columns we will create. Nigeria has the most countries for which it is accredited to be the designated embassy with nine. So I create nine accredited countries columns to accommodate this max number.

The point I want to cut up the original column is at the \n which is regex for a large space

I don’t want to remove the original column so I set remove to FALSE

ire_emb %<>%
  separate(
    col = "concurrent_accreditation",
    into = c("acc_1", "acc_2", "acc_3", "acc_4", "acc_5", "acc_6", "acc_7", "acc_8", "acc_9"),
    sep = "\n",
    remove = FALSE,
    extra = "warn",
    fill = "warn") %>% 
  mutate(across(where(is.character), str_trim)) 

Some countries have more than one type of mission, so I want to count each type of mission for each country and create a new variable with the distinct() and pivot_wider() functions

Click here to read more about turning long to wide format data

With the across() function we can replace all numeric variables with NA to zeros

Click here to read more about the across() function

ire_emb %>% 
  group_by(host_country, mission) %>% 
  mutate(number_missions = n())  %>% 
  distinct(host_country, mission, .keep_all = TRUE) %>% 
  ungroup() %>% 
  pivot_wider(!c(host_city, concurrent_accreditation:count_accreditation), 
              names_from = mission, 
              values_from = number_missions) %>% 
  janitor::clean_names() %>% 
  mutate(across(where(is.numeric), ~ replace_na(., 0))) %>% 
  select(!host_country) -> ire_wide

Before we bind the two datasets together, we need to only have one row for each country.

ire_emb %>% 
  distinct(host_country, .keep_all = TRUE) -> ire_dist

And bind them together:

ire_full <- cbind(ire_dist, ire_wide) 
Excited Aubrey Plaza GIF by Film Independent Spirit Awards - Find & Share on GIPHY

We can graph out where the embassies are with the geom_polygon() in ggplot

First we download the map data from dplyr and add correlates of war codes so we can easily join the datasets together with right_join()

First, we add correlates of war codes

Click here to read more about the countrycode package

ire_full %<>%
    mutate(cown = countrycode(host_country, "country.name", "cown")) 
world_map <- map_data("world")

world_map %<>% 
  mutate(cown = countrycode::countrycode(region, "country.name", "cown"))

I reorder the variables with the fct_relevel() function from the forcats package. This is just so they can better match the color palette from wesanderson package. Green means embassy, red for no mission and orange for representative office.

ire_full %>%
  right_join(world_map, by = "cown") %>% 
  filter(region != "Antarctica") %>% 
  mutate(mission = ifelse(is.na(mission), replace_na("No Mission"), mission)) %>% 
  mutate(mission = forcats::fct_relevel(mission,c("No Mission", "Embassy","Representative office"))) %>%
  ggplot(aes(x = long, y = lat, group = group)) + 
  geom_polygon(aes(fill = mission), color = "white", size = 0.5)  -> ire_map

And we can change how the map looks with the ggthemes package and colors from wesanderson package

  ire_map + ggthemes::theme_map() +
  theme(legend.key.size = unit(3, "cm"),
        text = element_text(size = 30),
        legend.title = element_blank()) + 
  scale_fill_manual(values = wes_palette("Darjeeling1", n = 4))

And we can count how many missions there are in each country

US has the hightest number with 8 offices, followed by UK with 4 and China with 3

ire_full %>%
  right_join(world_map, by = "cown") %>% 
  filter(region != "Antarctica") %>% 
  mutate(sum_missions = rowSums(across(embassy:representative_office))) %>% 
  mutate(sum_missions = replace_na(sum_missions, 0)) %>%  
  ggplot(aes(x = long, y = lat, group = group)) + 
  geom_polygon(aes(fill = as.factor(sum_missions)), color = "white", size = 0.5)  +
  ggthemes::theme_map() +
  theme(legend.key.size = unit(3, "cm"),
        text = element_text(size = 30),
        legend.title = element_blank()) + 
scale_fill_brewer(palette = "RdBu") + 
  ggtitle("Number of Irish missions in each country",
          subtitle = "Source: Wikipedia")

Last we can count the number of accredited countries that each embassy has. Nigeria has the most, in charge of 10 other countries across northern and central Africa.

ire_full %>% 
  right_join(world_map, by = "cown") %>% 
  filter(region != "Antarctica") %>%
  mutate(count_accreditation = str_count(concurrent_accreditation, pattern = "\n")) %>% 
  mutate(count_accreditation = replace_na(count_accreditation, -1)) %>%  
  ggplot(aes(x = long, y = lat, group = group)) + 
  geom_polygon(aes(fill = as.factor(count_accreditation)), color = "white", size = 0.5)  +
  ggthemes::theme_fivethirtyeight() +
  theme(legend.key.size = unit(1, "cm"),
        text = element_text(size = 30),
        legend.title = element_blank()) + 
  ggtitle("Number of Irish missions in extra accreditations",
          subtitle = "Source: Wikipedia")
Happy Maya Rudolph GIF - Find & Share on GIPHY

Running tidy t-tests with the infer package in R

Packages we will need:

library(tidyverse)
library(tidyr)
library(infer)
library(bbplot)
library(ggthemes)

For this t-test, we will compare US millenials and non-millenials and their views of the UK’s influence in the world.

The data will come from Chicago Council Survey of American Public Opinion on U.S. Foreign Policy

Click here to download 2017 policy survey data

The survey investigates American public opinion on foreign policy. It focuses on respondents’ opinions of the United States’ leadership role in the world and the challenges the country faces domestically and internationally.

The question on the UK’s influence asks how much influence you think the UK has in the world. Please answer on a 0 to 10 scale; with 0 meaning they are not at all influential and 10 meaning they are extremely influential.

First we select and recreate the variables

fp %>%
  select(
    milennial = XMILLENIALSSAMPLEFLAG,
    uk_influence = Q50_10) %>%
  separate(
    col = milennial,
    into = c("milennial_num", "milennial_char"),
    sep = '[)]',
    remove = TRUE) %>% 
  mutate(
     uk_influence = as.character(uk_influence),
     uk_influence = parse_number(uk_influence)) %>% 
  filter(uk_influence != -1) %>% 
  tidyr::drop_na(milennial_char) -> mil_fp

With the infer package, we can run a t-test:

mil_fp %>% 
  t_test(formula = uk_influence ~ milennial_char,
         alternative = "less")%>% 
  kable(format = "html")
statistic t_df p_value alternative estimate lower_ci upper_ci
-3.048249 1329.469 0.0011736 less -0.3274509 -Inf -0.1506332

There is a statistically significant difference between milennials and non-milennials.

We can graph a box plot.

mil_fp %>% 
  ggplot(mapping = aes(x = milennial_char,
                       y = uk_influence,
                       fill = milennial_char)) +
  geom_jitter(aes(color = milennial_char),
              size = 2, alpha = 0.5, width = 0.3) +
  geom_boxplot(alpha = 0.4) +
  coord_flip() + bbplot::bbc_style() +
  scale_fill_manual(values = my_palette) + 
  scale_color_manual(values = my_palette)

And a quick graph to compare UK with other countries: Germany and South Korea

mil_fp %>% 
  select(milennial_char, uk_influence, sk_influence, ger_influence) %>% 
  pivot_longer(!milennial_char, names_to = "survey_question", values_to = "response")  %>% 
  group_by(survey_question, response) %>% 
  summarise(n = n()) %>%
  mutate(freq = n / sum(n)) %>% 
  ungroup() %>% 
  filter(!is.na(response)) %>% 
  mutate(survey_question = case_when(survey_question == "uk_influence" ~ "UK",
survey_question == "ger_influence" ~ "Germany",
survey_question == "sk_influence" ~ "South Korea",
TRUE ~ as.character(survey_question))) %>% 
  ggplot() +
  geom_bar(aes(x = forcats::fct_reorder(survey_question, freq), 
               y = freq, fill = as.factor(response)), 
           color = "#e5e5e5", 
           size = 2, 
           position = "stack",
           stat = "identity") + 
  coord_flip() + 
  scale_fill_brewer(palette = "RdBu") + 
  ggthemes::theme_fivethirtyeight() + 
  ggtitle("View of Influence in the world?") +
  theme(legend.title = element_blank(),
        legend.position = "top",
        legend.key.size = unit(0.78, "cm"),
        text = element_text(size = 25),
        legend.text = element_text(size = 20))

Comparing North and South Korean UN votes at the General Assembly with unvotes package

Packages we will use

Llibrary(unvotes)
library(lubridate)
library(tidyverse)
library(magrittr)
library(bbplot)
library(waffle)
library(stringr)
library(wordcloud)
library(waffle)
library(wesanderson)

Last September 17th 2021 marked the 30th anniversary of the entry of North Korea and South Korea into full membership in the United Nations. Prior to this, they were only afforded observer status.

keia.org

The Two Koreas Mark 30 Years of UN Membership: The Road to Membership

Let’s look at the types of voting that both countries have done in the General Assembly since 1991.

First we can download the different types of UN votes from the unvotes package

un_votes <- unvotes::un_roll_calls

un_votes_issues <- unvotes::un_roll_call_issues

unvotes::un_votes -> country_votes 

Join them all together and filter out any country that does not have the word “Korea” in its name.

un_votes %>% 
  inner_join(un_votes_issues, by = "rcid") %>% 
  inner_join(country_votes, by = "rcid") %>% 
  mutate(year = format(date, format = "%Y")) %>%
  filter(grepl("Korea", country)) -> korea_un

First we can make a wordcloud of all the different votes for which they voted YES. Is there a discernable difference in the types of votes that each country supported?

First, download the stop words that we can remove (such as the, and, if)

data("stop_words") 

Then I will make a North Korean dataframe of all the votes for which this country voted YES. I remove some of the messy formatting with the gsub argument and count the occurence of each word. I get rid of a few of the procedural words that are more related to the technical wording of the resolutions, rather than related to the tpoic of the vote.

nk_yes_votes <- korea_un %>% 
  filter(country == "North Korea") %>% 
  filter(vote == "yes") %>%  
  select(descr, year) %>% 
  mutate(decade = substr(year, 1, 3)) %>% 
  mutate(decade = paste0(decade, "0s")) %>% 
  # group_by(decade) %>% 
  unnest_tokens(word, descr) %>% 
  mutate(word = gsub(" ", "", word)) %>% 
  mutate(word = gsub('_', '', word)) %>% 
  count(word, sort = TRUE) %>% 
  ungroup() %>% 
  anti_join(stop_words)  %>% 
  mutate(word = case_when(grepl("palestin", word) ~ "Palestine", 
                          grepl("nucl", word) ~ "nuclear",
                          TRUE ~ as.character(word)))  %>%
  filter(word != "resolution") %>% 
  filter(word != "assembly") %>% 
  filter(word != "draft") %>% 
  filter(word != "committee") %>% 
  filter(word != "requested") %>% 
  filter(word != "report") %>% 
  filter(word != "practices") %>% 
  filter(word != "affecting") %>% 
  filter(word != "follow") %>% 
  filter(word != "acting") %>% 
  filter(word != "adopted") 

Next, we count the number of each word


nk_yes_votes %<>% 
  count(word) %>% 
  arrange(desc(n))

We want to also remove the numbers

nums <- nk_yes_votes %>% filter(str_detect(word, "^[0-9]")) %>% select(word) %>% unique()

And remove the stop words

nk_yes_votes %<>%
  anti_join(nums, by = "word")

Choose some nice colours

my_colors <- c("#0450b4", "#046dc8", "#1184a7","#15a2a2", "#6fb1a0", 
               "#b4418e", "#d94a8c", "#ea515f", "#fe7434", "#fea802")

And lastly, plot the wordcloud with the top 50 words

wordcloud(nk_yes_votes$word, 
   nk_yes_votes$n, 
   random.order = FALSE, 
   max.words = 50, 
   colors = my_colors)

If we repeat the above code with South Korea:

There doesn’t seem to be a huge difference. But this is not a very scientfic approach; I just like the look of them!

Next we will compare the two countries how many votes they voted yes, no or abstained from…

korea_un %>% 
  group_by(country, vote) %>% 
  count() %>% 
  mutate(count_ten = n /25) %>% 
  ungroup() %>% 
  ggplot(aes(fill = vote, values = count_ten)) +
  geom_waffle(color = "white",
              size = 2.5,
              n_rows = 10,
              flip = TRUE) +
  facet_wrap(~country) + bbplot::bbc_style() +
  scale_fill_manual(values = wesanderson::wes_palette("Darjeeling1"))

Next we can look more in detail at the votes that they countries abstained from voting in.

We can use the tidytext function that reorders the geom_bar in each country. You can read the blog of Julie Silge to learn more about the functions, it is a bit tricky but it fixes the problem of randomly ordered bars across facets.

https://juliasilge.com/blog/reorder-within/

korea_un %>%
  filter(vote == "abstain") %>% 
  mutate(issue = case_when(issue == "Nuclear weapons and nuclear material" ~ "Nukes",
issue == "Arms control and disarmament" ~ "Arms",
issue == "Palestinian conflict" ~ "Palestine",
TRUE ~ as.character(issue))) %>% 
  select(country, issue, year) %>% 
  group_by(issue, country) %>% 
  count() %>% 
  ungroup() %>% 
  group_by(country) %>% 
  mutate(country = as.factor(country),
         issue = reorder_within(issue, n, country)) %>%
  ggplot(aes(x = reorder(issue, n), y = n)) + 
  geom_bar(stat = "identity", width = 0.7, aes(fill = country)) + 
  labs(title = "Abstaining UN General Assembly Votes by issues",
       subtitle = ("Since 1950s"),
       caption = "         Source: unvotes ") +
  xlab("") + 
  ylab("") +
  facet_wrap(~country, scales = "free_y") +
  scale_x_reordered() +
  coord_flip() + 
  expand_limits(y = 65) + 
  ggthemes::theme_pander() + 
  scale_fill_manual(values = sample(my_colors)) + 
 theme(plot.background = element_rect(color = "#f5f9fc"),
        panel.grid = element_line(colour = "#f5f9fc"),
        # axis.title.x = element_blank(),
        # axis.text.x = element_blank(),
        axis.text.y = element_text(color = "#000500", size = 16),
       legend.position = "none",
        # axis.title.y = element_blank(),
        axis.ticks.x = element_blank(),
        text = element_text(family = "Gadugi"),
        plot.title = element_text(size = 28, color = "#000500"),
        plot.subtitle = element_text(size = 20, color = "#484e4c"),
        plot.caption = element_text(size = 20, color = "#484e4c"))

South Korea was far more likely to abstain from votes that North Korea on all issues

Next we can simply plot out the Human Rights votes that each country voted to support. Even though South Korea has far higher human rights scores, North Korea votes in support of more votes on this topic.

korea_un %>% 
  filter(year < 2019) %>% 
  filter(issue == "Human rights") %>% 
  filter(vote == "yes") %>% 
  group_by(country, year) %>% 
  count() %>% 
  ggplot(aes(x = year, y = n, group = country, color = country)) + 
  geom_line(size = 2) + 
  geom_point(aes(color = country), fill = "white", shape = 21, size = 3, stroke = 2.5) +
  scale_x_discrete(breaks = round(seq(min(korea_un$year), max(korea_un$year), by = 10),1)) +
  scale_y_continuous(expand = c(0, 0), limits = c(0, 22)) + 
  bbplot::bbc_style() + facet_wrap(~country) + 
  theme(legend.position = "none") + 
  scale_color_manual(values = sample(my_colors)) + 
  labs(title = "Human Rights UN General Assembly Yes Votes ",
       subtitle = ("Since 1990s"),
       caption = "         Source: unvotes ")

All together:

Download and graph UN votes data with the unvotes package in R

Packages we will need:

library(unvotes)
library(lubridate)
library(tidyverse)
library(magrittr)
library(bbplot)
library(waffle)

How to download UN votes to R.

This package was created by David Robinson. Click here to read the CRAN PDF.

Pop Tv Congrats GIF by Schitt's Creek - Find & Share on GIPHY

We will download both the votes roll calls and the issues. Then we can use the inner_join() variable to add them together by the ID.

un_votes <- unvotes::un_roll_calls

un_votes_issues <- unvotes::un_roll_call_issues

un_votes %<>% 
  inner_join(un_votes_issues, by = "rcid")

We can create a year variable with the format() function and extract the year with “%Y”

un_votes %<>% 
  mutate(year = format(date, format = "%Y")) 

And graph out the count of each type of UN vote issue

un_votes %>% 
  group_by(year) %>% 
  count(issue) %>% 
  ggplot(aes(x = year, y = n, group = issue, color = issue)) + 
  geom_line(size = 2) + 
  geom_point(aes(color = issue), fill = "white", 
             shape = 21, size = 2, stroke = 1) +
  scale_x_discrete(breaks = round(seq(min(un_votes$year), max(un_votes$year), by = 10),1)) +
  bbplot::bbc_style() + facet_wrap(~issue)

Next we can look at which decade had the most votes across the issues with the waffle package

Click here to read more about the waffle package

un_votes %>% 
  mutate(decade = substr(year, 1, 3)) %>% 
  mutate(decade = paste0(decade, "0s")) %>% 
  
  group_by(decade) %>% 
  count(issue) %>% 
  
  ggplot(aes(fill = issue, values = n)) +
  geom_waffle(color = "white",
              size = 0.3,
              n_rows = 10, 
              flip = TRUE) +
  facet_wrap(~decade, nrow = 1, strip.position = "bottom") + 
  bbplot::bbc_style()  +
  scale_x_discrete(breaks = round(seq(0, 1, by = 0.2),3)) 

The 1980s were a prolific time for the UNGA with voting, with arms control being the largest share of votes. And it has stablised in the decades since.

Well Done Applause GIF by CBC - Find & Share on GIPHY

Next we can look at votes in total

un_votes %>% 
  mutate(issue = case_when(issue == "Nuclear weapons and nuclear material" ~ "Nukes",
                           issue == "Arms control and disarmament" ~ "Arms",
                           issue == "Palestinian conflict" ~ "Palestine",
                           TRUE ~ as.character(issue))) %>% 
  count(issue) %>%  
  ggplot(aes(x = reorder(issue, n), y = n, fill = as.factor(issue))) + 
  geom_bar(stat = "identity") + 
  coord_polar("x", start = 0, direction = -1)  + 
  ggthemes::theme_pander()  +
  bbplot::bbc_style() + 
    theme(axis.text = element_blank(),
          axis.title.x = element_blank(),
          axis.title.y = element_blank(),
          axis.ticks = element_blank(),
          text = element_text(size = 25),
          panel.grid = element_blank()) + 
    ggtitle(label = "UN Votes by issue ", 
            subtitle = "Source: unvotes package")

Grouping, counting words and making wordclouds

library(tidytext)
library(wordcloud)
library(knitr)
library(kableExtra)

How to make wordclouds in R!

First, download stop words (such as and, the, of) to filter out of the dataset

data("stop_words")

Then we will will unnest tokens and count the occurences of each word in each decade.

tokens <- democracy_aid %>%
  select(description, year) %>% 
  mutate(decade = substr(year, 1, 3)) %>% 
  mutate(decade = paste0(decade, "0s")) %>% 
  group_by(decade) %>% 
  unnest_tokens(word, activity_description) %>% 
  count(word, sort = TRUE) %>% 
  ungroup() %>% 
  anti_join(stop_words) 

nums <- tokens %>% filter(str_detect(word, "^[0-9]")) %>% select(word) %>% unique()

tokens %<>%
  anti_join(nums, by = "word") 

And with the kable() function we can make a HTML table that I copy and paste to this blog. Below I rewrite the HTML to change the headings

tokens %>% 
    group_by(decade) %>% 
    top_n(n = 10,
          wt = n)  %>%
    arrange(decade, desc(n)) %>%
    arrange(desc(n)) %>%
    knitr::kable("html")
decade word n
2010s rights 4541
2010s local 3981
2010s youth 3778
2010s promote 3679
2010s democratic 3618
2010s public 3444
2010s national 3060
2010s political 3020
2010s human 3009
2010s organization 2711
2000s rights 2548
2000s human 1745
2000s local 1544
2000s conduct 1381
2000s political 1257
2000s training 1217
2000s promote 1142
2000s public 1121
2000s democratic 1071
2000s national 988

Create a vector of colors:

my_colors <- c("#0450b4", "#046dc8", "#1184a7","#15a2a2", "#6fb1a0", 
               "#b4418e", "#d94a8c", "#ea515f", "#fe7434", "#fea802")
Always Sunny Reaction GIF - Find & Share on GIPHY
tokens %<>% 
  mutate(word = ifelse(grepl("democr", word), "democracy", 
                ifelse(grepl("politi", word), "politics", 
                ifelse(grepl("institut", word), "institution", 
                ifelse(grepl("govern", word), "government", 
                ifelse(grepl("organiz", word), "organization", 
                ifelse(grepl("elect", word), "election", word))))))) 

wordcloud(tokens$word, tokens$n, random.order = FALSE, max.words = 50, colors = my_colors)
2010s Decade Word Count
2010s rights 4541
2010s local 3981
2010s youth 3778
2010s promote 3679
2010s democratic 3618
2010s public 3444
2010s national 3060
2010s political 3020
2010s human 3009
2010s organization 2711
2000s Decade Word Count
2000s rights 2548
2000s human 1745
2000s local 1544
2000s conduct 1381
2000s political 1257
2000s training 1217
2000s promote 1142
2000s public 1121
2000s democratic 1071
2000s national 988

And if we compare civic versus politically-oriented aid, we can see that more money goes towards projects that have political or electoral aims rather than civic or civil society education goals

tokens %>% 
  group_by(year) %>% 
  top_n(n = 20,
        wt = n) %>% 
  mutate(word = case_when(word == "party" ~ "political",
                          word == "parties" ~ "political",
                          word == "election" ~ "political",
                          word == "electoral" ~ "political",
                          word == "civil" ~ "civic", 
                          word == "civic" ~ "civic",
                          word == "social" ~ "civic",
                          word == "education" ~ "civic",
                          word == "society" ~ "civic", 
                          TRUE ~ as.character(word))) %>% 
  filter(word == "political" | word == "civic") %>% 
  ggplot(aes(x = year, y = n, group = word)) + 
  geom_line(aes(color = word ), size = 2.5,alpha = 0.6)  +
  geom_point(aes(color = word ), fill = "white", 
             shape = 21, size = 3, stroke = 2) +
  bbplot::bbc_style() + 
  scale_x_discrete(limits = c(2001:2019)) +
  theme(axis.text.x= element_text(size = 15,
                                  angle = 45)) +
  scale_color_discrete(name = "Aid type", labels = c("Civic grants", "Political grants"))

Wrangling and graphing UN Secretaries-General data with R

Packages we will need:

library(tidyverse)
library(janitor)
library(rvest)
library(countrycode)
library(magrittr)
library(lubridate)
library(ggflags)
library(scales)

According to Urquhart (1995) in his article, “Selecting the World’s CEO”,

From the outset, the U.N. secretary
general has been an important part of the
institution, not only as its chief executive,
but as both symbol and guardian of the
original vision of the organization.
There, however, specific agreement has
ended. The United Nations, like any
important organization, needs strong and
independent leadership, but it is an inter-
governmental organization, and govern
ments have no intention of giving up
control of it. While the secretary-general
can be extraordinarily useful in times of
crisis, the office inevitably embodies
something more than international coop
eration, sometimes even an unwelcome
hint of supranationalism. Thus, the atti-
tude of governments toward the United
Nations’ chief and only elected official is
and has been necessarily ambivalent.

(Urquhart, 1995: 21)

So who are these World CEOs? We’ll examine more in this dataset.

First, we will scrape the data from the Wikipedia

sg_html <- read_html("https://en.wikipedia.org/wiki/Secretary-General_of_the_United_Nations")
sg_tables <- sg_html %>% html_table(header = TRUE, fill = TRUE)
sg <- sg_tables[[2]]

The table we scrape is a bit of a hot mess in this state …. but we can fix it

Donald Glover Pizza GIF - Find & Share on GIPHY

We can first use the clean_names() function from the janitor package

A quick way to clean up the table and keep only the rows with the names of the Secretaries-General is to use the distinct() function. Last we filter out the rows and select out the columns we don’t want.

sg %>% 
  clean_names() %>% 
  distinct(no, .keep_all = TRUE) %>% 
  filter(no != "–") %>% 
  select(!c(portrait, ref))-> sg_clean

Already we can see a much cleaner table. However, the next problem is that the names and their years of birth / death are in one cell.

Also the dates in office are combined together.

So we can use the separate() function from tidyr to make new variables for each piece of information.

First we will separate the name of the Secretary-General from their date of birth and death.

We supply the two new variable names to the into = argument.

We then use the regex code pattern [()] to indicate where we want to separate the character string into two separate columns. In this instance the regex pattern is for what is after the round brackets (

I want to remove the original cluttered varaible so remove = TRUE

sg_clean %<>% 
  separate(
    col = secretary_general_born_died,
    into = c("sec_gen", "born_died"),
    sep = '[()]',
    remove = TRUE) 

We can repeat this step to create a separate born and died variable. This time the separator symbol is a hyphen And so we do not need regex pattern; we can just indicate a hyphen.

sg_clean %<>% 
  separate(
    col = born_died,
    into = c("born", "died"),
    sep = '–',
    remove = TRUE)  

And I want to ignore the “present” variable, so I extract the numbers with the parse_number() function, converting things from characters to numbers

sg_clean %<>% 
  mutate(born = parse_number(born))

Last, we repeat with the dates in office. This is also easily seperated by indicating the hyphen.

sg_clean %<>% 
  separate(
    col = dates_in_office,
    into = c("start_office", "end_office"),
    sep = '–',
    remove = TRUE)  

We convert the word “present” to the actual present date

sg_clean %<>% 
  mutate(end_office = ifelse(end_office == "present", "5 May 2022", end_office))

We use the lubridate dmy() function to convert the character strings to date class variables.

sg_clean %<>% 
  mutate(start_office = dmy(start_office),
         end_office = dmy(end_office))

We can calculate the length of time that each Secretary-General was in office with the difftime() function.

sg_clean %<>% 
  mutate(duration_days = difftime(end_office, start_office, units = "days"),
         duration_years = round(duration_days / 365, 2),
         duration_years = as.integer(duration_years))

Next we can compare the different durations and see which Secretary-General was longest or shortest in office.

sg_clean %>% 
  mutate(duration_days = difftime(end_office, start_office)) %>%  
  mutate(iso2 = tolower(countrycode::countrycode(country_of_origin, "country.name", "iso2c"))) %>% 
  ggplot(aes(x = forcats::fct_reorder(sec_gen, duration_days), y = duration_days)) + 
  geom_bar(aes(fill = un_regional_group), stat = "identity", width = 0.7) + 
  coord_flip() + bbplot::bbc_style() + 
  ggflags::geom_flag(aes(x = sec_gen, y = -100, country = iso2), size = 12) +
  scale_fill_manual(values = le_palette) +
  labs(title = "Longest serving UN Secretaries General",
       subtitle = ("Source: Wikipedia")) + 
  xlab("") + ylab("") 

We can make a quick pie-chart to compare regions. We can see that Secretaries-General from the West have had the most time in office

sg_text <- sg_count %>% 
  arrange(desc(un_regional_group)) %>%
  mutate(prop = sum_days / sum(sg_count$sum_days) *100) %>%
  mutate(ypos = cumsum(prop)- 0.5*prop )

sg_text %>% 
  count(un_regional_group)

sg_text %>%
  mutate(region = case_when(un_regional_group == "Western European & others" ~ "Europe",
         un_regional_group == "Latin American& Caribbean" ~ "Latin America",
         un_regional_group == "Asia & Pacific" ~ "Asia", 
         TRUE ~ as.character(un_regional_group))) %>% 
  ggplot(aes(x = "", y = prop, fill = region)) +
  geom_bar(stat = "identity", width = 1) +
  geom_text(aes(y = ypos + 1, label = round(prop, 0)), color = "white", size = 15) +
  coord_polar("y", start = 0) +
  theme_void() +
  ggtitle("Length of Secretaries General in office across regions") + 
  scale_fill_manual(values = le_palette) + 
  theme(legend.title = element_blank(),
        legend.text = element_text(size = 20), 
        plot.title = element_text(size = 30))

We can create a Gantt-like chart to track the timeline for the different men (all men!)

Click here to read more about timelines in R

sg_clean %>% 
  mutate(region = case_when(un_regional_group == "Western European & others" ~ "Europe",un_regional_group == "Latin American& Caribbean" ~ "Latin America",un_regional_group == "Asia & Pacific" ~ "Asia", TRUE ~ as.character(un_regional_group))) %>%
  ggplot(aes(x = as.Date(start_office), 
             y = no, 
             color = region)) +
  geom_segment(aes(xend = as.Date(end_office), 
                   yend = no, alpha = 0.9,
                   color = region), size = 9)  +
  geom_text(aes(label = sec_gen), 
            color = "black", 
            alpha = 0.7,
            size = 8, show.legend = FALSE) +
  bbplot::bbc_style() +
  scale_color_manual(values = le_palette) + 
  scale_x_date(breaks = scales::breaks_pretty(15))
Confused Donald Glover GIF - Find & Share on GIPHY

References

Urquhart, B. (1995). Selecting the world’s CEO: Remembering the Secretaries-General. Foreign Affairs, 21-26.

Donald Glover Community GIF - Find & Share on GIPHY

Scraping and wrangling UN peacekeeping data with tidyr package in R

Packages we will need:

library(tidyverse)
library(rvest)
library(magrittr)
library(tidyr)
library(countrycode)
library(democracyData)
library(janitor)
library(waffle)

For this blog post, we will look at UN peacekeeping missions and compare across regions.

Despite the criticisms about some operations, the empirical record for UN peacekeeping records has been robust in the academic literature

“In short, peacekeeping intervenes in the most difficult
cases, dramatically increases the chances that peace will
last, and does so by altering the incentives of the peacekept,
by alleviating their fear and mistrust of each other, by
preventing and controlling accidents and misbehavior by
hard-line factions, and by encouraging political inclusion”
(Goldstone, 2008: 178).

The data on the current and previous PKOs (peacekeeping operations) will come from the Wikipedia page. But the variables do not really lend themselves to analysis as they are.

Amy Coney Barrett Snl GIF by Saturday Night Live - Find & Share on GIPHY

Once we have the url, we scrape all the tables on the Wikipedia page in a few lines

pko_members <- read_html("https://en.wikipedia.org/wiki/List_of_United_Nations_peacekeeping_missions")
pko_tables <- pko_members %>% html_table(header = TRUE, fill = TRUE)

Click here to read more about the rvest package for scraping data from websites.

pko_complete_africa <- pko_tables[[1]]
pko_complete_americas <- pko_tables[[2]]
pko_complete_asia <- pko_tables[[3]]
pko_complete_europe <- pko_tables[[4]]
pko_complete_mena <- pko_tables[[5]]

And then we bind them together! It’s very handy that they all have the same variable names in each table.

rbind(pko_complete_africa, pko_complete_americas, pko_complete_asia, pko_complete_europe, pko_complete_mena) -> pko_complete

Next, we will add a variable to indicate that all the tables of these missions are completed.

pko_complete %<>% 
  mutate(complete = ifelse(!is.na(pko_complete$Location), "Complete", "Current"))

We do the same with the current missions that are ongoing:

pko_current_africa <- pko_tables[[6]]
pko_current_asia <- pko_tables[[7]]
pko_current_europe <- pko_tables[[8]]
pko_current_mena <- pko_tables[[9]]

rbind(pko_current_europe, pko_current_mena, pko_current_asia, pko_current_africa) -> pko_current

pko_current %<>% 
  mutate(complete = ifelse(!is.na(pko_current$Location), "Current", "Complete"))

We then bind the completed and current mission data.frames

rbind(pko_complete, pko_current) -> pko

Then we clean the variable names with the function from the janitor package.

pko_df <-  pko %>% 
  janitor::clean_names()

Next we’ll want to create some new variables.

We can make a new row for each country that is receiving a peacekeeping mission. We can paste all the countries together and then use the separate function from the tidyr package to create new variables.

 pko_df %>%
  group_by(conflict) %>%
  mutate(location = paste(location, collapse = ', ')) %>% 
  separate(location,  into = c("country_1", "country_2", "country_3", "country_4", "country_5"), sep = ", ")  %>% 
  ungroup() %>% 
  distinct(conflict, .keep_all = TRUE) %>% 

Next we can create a new variable that only keeps the acroynm for the operation name. I took these regex codes from the following stack overflow link

pko_df %<>% 
  mutate(acronym = str_extract_all(name_of_operation, "\\([^()]+\\)")) %>% 
  mutate(acronym = substring(acronym, 2, nchar(acronym)-1)) %>% 
  separate(dates_of_operation, c("start_date", "end_date"), "–")

I will fill in the end data for the current missions that are still ongoing in 2022

pko_df %<>% 
  mutate(end_date = ifelse(complete == "Current", 2022, end_date)) 

And next we can calculate the duration for each operation

pko_df %<>% 
  mutate(end_date = as.integer(end_date)) %>% 
  mutate(start_date = as.integer(start_date)) %>% 
  mutate(duration = ifelse(!is.na(end_date), end_date - start_date, 1)) 

I want to compare regions and graph out the different operations around the world.

We can download region data with democracyData package (best package ever!)

Snl Season 47 GIF by Saturday Night Live - Find & Share on GIPHY
pacl <- redownload_pacl()

pacl %>% 
  select(cown = pacl_cowcode,
        un_region_name, un_continent_name) %>% 
  distinct(cown, .keep_all = TRUE) -> pacl_region

We join the datasets together with the inner_join() and add Correlates of War country codes.

pko_df %<>% 
  mutate(cown = countrycode(country_1, "country.name", "cown")) %>%   mutate(cown = ifelse(country_1 == "Western Sahara", 605, 
                       ifelse(country_1 == "Serbia", 345, cown))) %>% 
  inner_join(pacl_region, by = "cown")

Now we can start graphing our duration data:

pko_df %>% 
  ggplot(mapping = aes(x = forcats::fct_reorder(un_region_name, duration), 
                       y = duration, 
                       fill = un_region_name)) +
  geom_boxplot(alpha = 0.4) +
  geom_jitter(aes(color = un_region_name),
              size = 6, alpha = 0.8, width = 0.15) +
  coord_flip() + 
  bbplot::bbc_style() + ggtitle("Duration of Peacekeeping Missions")
Years

We can see that Asian and “Western Asian” – i.e. Middle East – countries have the longest peacekeeping missions in terns of years.

pko_countries %>% 
  filter(un_continent_name == "Asia") %>%
  unite("country_names", country_1:country_5, remove = TRUE,  na.rm = TRUE, sep = ", ") %>% 
  arrange(desc(duration)) %>% 
  knitr::kable("html")
Start End Duration Region Country
1949 2022 73 Southern Asia India, Pakistan
1964 2022 58 Western Asia Cyprus, Northern Cyprus
1974 2022 48 Western Asia Israel, Syria, Lebanon
1978 2022 44 Western Asia Lebanon
1993 2009 16 Western Asia Georgia
1991 2003 12 Western Asia Iraq, Kuwait
1994 2000 6 Central Asia Tajikistan
2006 2012 6 South-Eastern Asia East Timor
1988 1991 3 Southern Asia Iran, Iraq
1988 1990 2 Southern Asia Afghanistan, Pakistan
1965 1966 1 Southern Asia Pakistan, India
1991 1992 1 South-Eastern Asia Cambodia, Cambodia
1999 NA 1 South-Eastern Asia East Timor, Indonesia, East Timor, Indonesia, East Timor
1958 NA 1 Western Asia Lebanon
1963 1964 1 Western Asia North Yemen
2012 NA 1 Western Asia Syria

Next we can compare the decades

pko_countries %<>% 
  mutate(decade = substr(start_date, 1, 3)) %>% 
  mutate(decade = paste0(decade, "0s")) 

And graph it out:

pko_countries %>% 
  ggplot(mapping = aes(x = decade, 
                       y = duration, 
                       fill = decade)) +
  geom_boxplot(alpha = 0.4) +
  geom_jitter(aes(color = decade),
              size = 6, alpha = 0.8, width = 0.15) +
   coord_flip() + 
  geom_curve(aes(x = "1950s", y = 60, xend = "1940s", yend = 72),
  arrow = arrow(length = unit(0.1, "inch")), size = 0.8, color = "black",
   curvature = -0.4) +
  annotate("text", label = "First Mission to Kashmir",
           x = "1950s", y = 49, size = 8, color = "black") +
  geom_curve(aes(x = "1990s", y = 46, xend = "1990s", yend = 32),
             arrow = arrow(length = unit(0.1, "inch")), size = 0.8, color = "black",curvature = 0.3) +
  annotate("text", label = "Most Missions after the Cold War",
           x = "1990s", y = 60, size = 8, color = "black") +

  bbplot::bbc_style() + ggtitle("Duration of Peacekeeping Missions")
Years

Following the end of the Cold War, there were renewed calls for the UN to become the agency for achieving world peace, and the agency’s peacekeeping dramatically increased, authorizing more missions between 1991 and 1994 than in the previous 45 years combined.

We can use a waffle plot to see which decade had the most operation missions. Waffle plots are often seen as more clear than pie charts.

Click here to read more about waffle charts in R

To get the data ready for a waffle chart, we just need to count the number of peacekeeping missions (i.e. the number of rows) in each decade. Then we fill the groups (i.e. decade) and enter the n variable we created as the value.

pko_countries %>% 
  group_by(decade) %>% 
  count() %>%  
  ggplot(aes(fill = decade, values = n)) + 
  waffle::geom_waffle(color = "white", size= 3, n_rows = 8) +
  scale_x_discrete(expand=c(0,0)) +
  scale_y_discrete(expand=c(0,0)) +
  coord_equal() +
  labs(title = "Number of Peacekeeper Missions") + bbplot::bbc_style() 
Cecily Strong Snl GIF by Saturday Night Live - Find & Share on GIPHY

If we want to add more information, we can go to the UN Peacekeeping website and download more data on peacekeeping troops and operations.

We can graph the number of peacekeepers per country

Click here to learn more about adding flags to graphs!

le_palette <- c("#5f0f40", "#9a031e", "#94d2bd", "#e36414", "#0f4c5c")

pkt %>%
  mutate(contributing_country = ifelse(contributing_country == "United Republic of Tanzania", "Tanzania",ifelse(contributing_country == "Côte d’Ivoire", "Cote d'Ivoire", contributing_country))) %>% 
  mutate(iso2 = tolower(countrycode::countrycode(contributing_country, "country.name", "iso2c"))) %>% 
  mutate(cown = countrycode::countrycode(contributing_country, "country.name", "cown")) %>% 
  inner_join(pacl_region, by = "cown") %>% 
  mutate(un_region_name = case_when(grepl("Africa", un_region_name) ~ "Africa",grepl("Eastern Asia", un_region_name) ~ "South-East Asia",
 un_region_name == "Western Africa" ~ "Middle East",TRUE ~ as.character(un_region_name))) %>% 
  filter(total_uniformed_personnel > 700) %>% 
  ggplot(aes(x = reorder(contributing_country, total_uniformed_personnel),
             y = total_uniformed_personnel)) + 
  geom_bar(stat = "identity", width = 0.7, aes(fill = un_region_name), color = "white") +
  coord_flip() +
  ggflags::geom_flag(aes(x = contributing_country, y = -1, country = iso2), size = 8) +
  # geom_text(aes(label= values), position = position_dodge(width = 0.9), hjust = -0.5, size = 5, color = "#000500") + 
  scale_fill_manual(values = le_palette) +
  labs(title = "Total troops serving as peacekeepers",
       subtitle = ("Across countries"),
       caption = "         Source: UN ") +
  xlab("") + 
  ylab("") + bbplot::bbc_style()

We can see that Bangladesh, Nepal and India have the most peacekeeper troops!

Convert event-level data to panel-level data with tidyr in R

Packages we will need:

library(tidyverse)
library(magrittr)
library(lubridate)
library(tidyr)
library(rvest)
library(janitor)

In this post, we are going to scrape NATO accession data from Wikipedia and turn it into panel data. This means turning a list of every NATO country and their accession date into a time-series, cross-sectional dataset with information about whether or not a country is a member of NATO in any given year.

This is helpful for political science analysis because simply a dummy variable indicating whether or not a country is in NATO would lose information about the date they joined. The UK joined NATO in 1948 but North Macedonia only joined in 2020. A simple binary variable would not tell us this if we added it to our panel data.

Consoling 30 Rock GIF - Find & Share on GIPHY

We will first scrape a table from the Wikipedia page on NATO member states with a few functions form the rvest pacakage.

Click here to read more about the rvest package:

nato_members <- read_html("https://en.wikipedia.org/wiki/Member_states_of_NATO")

nato_tables <- nato_members %>% html_table(header = TRUE, fill = TRUE)

nato_member_joined <- nato_tables[[1]]

We have information about each country and the date they joined. In total there are 30 rows, one for each member of NATO.

Next we are going to clean up the data, remove the numbers in the [square brackets], and select the columns that we want.

A very handy function from the janitor package cleans the variable names. They are lower_case_with_underscores rather than how they are on Wikipedia.

Next we remove the square brackets and their contents with sub("\\[.*", "", insert_variable_name)

And the accession date variable is a bit tricky because we want to convert it to date format, extract the year and convert back to an integer.

nato_member_joined %<>% 
  clean_names() %>% 
  select(country = member_state, 
         accession = accession_3) %>% 
  mutate(member_2020 = 2020,
         country = sub("\\[.*", "", country),
         accession = sub("\\[.*", "", accession),
         accession = parse_date_time(accession, "dmy"),
         accession = format(as.Date(accession, format = "%d/%m/%Y"),"%Y"),
         accession = as.numeric(as.character(accession)))

When we have our clean data, we will pivot the data to longer form. This will create one event column that has a value of accession or member in 2020.

This gives us the start and end year of our time variable for each country.

nato_member_joined %<>% 
  pivot_longer(!country, names_to = "event", values_to = "year") 

Our dataset now has 60 observations. We see Albania joined in 2009 and is still a member in 2020, for example.

Next we will use the complete() function from the tidyr package to fill all the dates in between 1948 until 2020 in the dataset. This will increase our dataset to 2,160 observations and a row for each country each year.

Nect we will group the dataset by country and fill the nato_member status variable down until the most recent year.

nato_member_joined %<>% 
  mutate(year = as.Date(as.character(year), format = "%Y")) %>% 
  mutate(year = ymd(year)) %>% 
  complete(country, year = seq.Date(min(year), max(year), by = "year")) %>% 
  mutate(nato_member = ifelse(event == "accession", 1, 
                              ifelse(event == "member_2020", 1, 0))) %>% 
  group_by(country) %>% 
  fill(nato_member, .direction = "down") %>%
  ungroup()

Last, we will use the ifelse() function to mutate the event variable into one of three categories: 'accession‘, 'member‘ or ‘not member’.

nato_member_joined %>%
  mutate(nato_member = replace_na(nato_member, 0),
         year = parse_number(as.character(year)),
         event = ifelse(nato_member == 0, "not member", event),
         event = ifelse(nato_member == 1 & is.na(event), "member", event),
         event = ifelse(event == "member_2020", "member", event))  %>% 
  distinct(country, year, .keep_all = TRUE) -> nato_panel
High Five 30 Rock GIF - Find & Share on GIPHY

Lump groups together and create “other” category with forcats package

Packages we will need:

library(tidyverse)
library(forcats)
library(tidytext)
library(ggthemes)
library(democracyData)
library(magrittr)

For this blog, we are going to look at the titles of all countries’ heads of state, such as Kings, Presidents, Emirs, Chairman … understandably, there are many many many ways to title the leader of a country.

First, we will download the PACL dataset from the democracyData package.

Click here to read more about this super handy package:

If you want to read more about the variables in this dataset, click the link below to download the codebook by Cheibub et al.

pacl <- redownload_pacl()

We are going to look at the npost variable; this captures the political title of the nominal head of stage. This can be King, President, Sultan et cetera!

pacl %>% 
  count(npost) %>% 
  arrange(desc(n))

If we count the occurence of each title, we can see there are many ways to be called the head of a country!

"president"                         3693
"prime minister"                    2914
"king"                               470
"Chairman of Council of Ministers"   229
"premier"                            169
"chancellor"                         123
"emir"                               117
"chair of Council of Ministers"      111
"head of state"                       90
"sultan"                              67
"chief of government"                 63
"president of the confederation"      63
""                                    44
"chairman of Council of Ministers"    44
"shah"                                33

# ... with 145 more rows

155 groups is a bit difficult to meaningfully compare.

So we can collapse some of the groups together and lump all the titles that occur relatively seldomly – sometimes only once or twice – into an “other” category.

Clueless Movie Tai GIF - Find & Share on GIPHY

First, we use grepl() function to take the word president and chair (chairman, chairwoman, chairperson et cetera) and add them into broader categories.

Also, we use the tolower() function to make all lower case words and there is no confusion over the random capitalisation.

 pacl %<>% 
  mutate(npost = tolower(npost)) %>% 
  mutate(npost = ifelse(grepl("president", npost), "president", npost)) %>% 
  mutate(npost = ifelse(grepl("chair", npost), "chairperson", npost))

Next, we create an "other leader type" with the fct_lump_prop() function.

We specifiy a threshold and if the group appears fewer times in the dataset than this level we set, it is added into the “other” group.

pacl %<>% 
  mutate(regime_prop = fct_lump_prop(npost,
                                   prop = 0.005,
                                   other_level = "Other leader type")) %>% 
  mutate(regime_prop = str_to_title(regime_prop)) 

Now, instead of 155 types of leader titles, we have 10 types and the rest are all bundled into the Other Leader Type category

President            4370
Prime Minister       2945
Chairperson           520
King                  470
Other Leader Type     225
Premier               169
Chancellor            123
Emir                  117
Head Of State          90
Sultan                 67
Chief Of Government    63
The Office Smile GIF - Find & Share on GIPHY

The forcast package has three other ways to lump the variables together.

First, we can quickly look at fct_lump_min().

We can set the min argument to 100 and look at how it condenses the groups together:

pacl %>% 
  mutate(npost = tolower(npost)) %>% 
 
  mutate(post_min = fct_lump_min(npost,
                                   min = 100,
                                   other_level = "Other type")) %>% 
  mutate(post_min = str_to_title(post_min)) %>% 
  count(post_min) %>% 
  arrange(desc(n))
President       4370
Prime Minister  2945
Chairperson      520
King             470
Other Type       445
Premier          169
Chancellor       123
Emir             117

We can see that if the post appears fewer than 100 times, it is now in the Other Type category. In the previous example, Head Of State only appeared 90 times so it didn’t make it.

Next we look at fct_lump_lowfreq().

This function lumps together the least frequent levels. This one makes sure that “other” category remains as the smallest group. We don’t add another numeric argument.

pacl %>% 
  mutate(npost = tolower(npost)) %>% 
  mutate(post_lowfreq  = fct_lump_lowfreq(npost,
                                   other_level = "Other type")) %>% 
  mutate(post_lowfreq = str_to_title(post_lowfreq)) %>% 
  count(post_lowfreq) %>% 
  arrange(desc(n))
President       4370
Prime Minister  2945
Other Type      1844

This one only has three categories and all but president and prime minister are chucked into the Other type category.

Last, we can look at the fct_lump_n() to make sure we have a certain number of groups. We add n = 5 and we create five groups and the rest go to the Other type category.

pacl %>% 
  mutate(npost = tolower(npost)) %>% 
  mutate(post_n  = fct_lump_n(npost,
                                n = 5,
                                other_level = "Other type")) %>% 
  mutate(post_n = str_to_title(post_n)) %>% 
  count(post_n) %>% 
  arrange(desc(n))
President       4370
Prime Minister  2945
Other Type       685
Chairperson      520
King             470
Premier          169
Sums It Up The Office GIF - Find & Share on GIPHY

Next we can make a simple graph counting the different leader titles in free, partly free and not free Freedom House countries. We will use the download_fh() from DemocracyData package again

fh <- download_fh()

We will use the reorder_within() function from tidytext package.

Click here to read the full blog post explaining the function from Julia Silge’s blog.

First we add Freedom House data with the inner_join() function

Then we use the fct_lump_n() and choose the top five categories (plus the Other Type category we make)

pacl %<>% 
  inner_join(fh, by = c("cown", "year")) %>% 
  mutate(npost  = fct_lump_n(npost,
                  n = 5,
                  other_level = "Other type")) %>%
  mutate(npost = str_to_title(npost))

Then we group_by the three Freedom House status levels and count the number of each title:

pacl %<>% 
  group_by(status) %>% 
  count(npost) %>% 
  ungroup() %>% 

Using reorder_within(), we order the titles from most to fewest occurences WITHIN each status group:

pacl %<>%
  mutate(npost = reorder_within(npost, n, status)) 

To plot the columns, we use geom_col() and separate them into each Freedom House group, using facet_wrap(). We add scales = "free y" so that we don’t add every title to each group. Without this we would have empty spaces in the Free group for Emir and King. So this step removes a lot of clutter.

pacl_colplot <- pacl %>%
  ggplot(aes(fct_reorder(npost, n), n)) +
  geom_col(aes(fill = npost), show.legend = FALSE) +
  facet_wrap(~status, scales = "free_y") 

Last, I manually added the colors to each group (which now have longer names to reorder them) so that they are consistent across each group. I am sure there is an easier and less messy way to do this but sometimes finding the easier way takes more effort!

We add the scale_x_reordered() function to clean up the names and remove everything from the underscore in the title label.

pacl_colplot + scale_fill_manual(values = c("Prime Minister___F" = "#005f73",
                                "Prime Minister___NF" = "#005f73",
                                "Prime Minister___PF" = "#005f73",
                                
                               "President___F" = "#94d2bd",
                               "President___NF" = "#94d2bd",
                               "President___PF" = "#94d2bd",
                               
                               "Other Type___F" = "#ee9b00",
                               "Other Type___NF" = "#ee9b00",
                               "Other Type___PF" = "#ee9b00",
                               
                               "Chairperson___F" = "#bb3e03",
                               "Chairperson___NF" = "#bb3e03",
                               "Chairperson___PF" = "#bb3e03",
                               
                               "King___F" = "#9b2226",
                               "King___NF" = "#9b2226",
                               "King___PF" = "#9b2226",
                               
                               "Emir___F" = "#001219", 
                               "Emir___NF" = "#001219",
                               "Emir___PF" = "#001219")) +
  scale_x_reordered() +
  coord_flip() + 
  ggthemes::theme_fivethirtyeight() + 
  themes(text = element_size(size = 30))

In case you were curious about the free country that had a chairperson, Nigeria had one for two years.

pacl %>%
  filter(status == "F") %>% 
  filter(npost == "Chairperson") %>% 
  select(Country = pacl_country) %>% 
  knitr::kable("latex") %>%
  kableExtra::kable_classic(font_size = 30)

References

Cheibub, J. A., Gandhi, J., & Vreeland, J. R. (2010). Democracy and dictatorship revisited. Public choice143(1), 67-101.

Visualise DemocracyData with graphs and maps

Packages we will need:

library(tidyverse)
library(democracyData)
library(magrittr)
library(ggrepel)
library(ggthemes)
library(countrycode)

In this post, we will look at easy ways to graph data from the democracyData package.

The two datasets we will look at are the Anckar-Fredriksson dataset of political regimes and Freedom House Scores.

Regarding democracies, Anckar and Fredriksson (2018) distinguish between republics and monarchies. Republics can be presidential, semi-presidential, or parliamentary systems.

Within the category of monarchies, almost all systems are parliamentary, but a few countries are conferred to the category semi-monarchies.

Bill Murray King GIF - Find & Share on GIPHY

Autocratic countries can be in the following main categories: absolute monarchy, military rule, party-based rule, personalist rule, and oligarchy.

anckar <- democracyData::redownload_anckar()
fh <- download_fh()

We will see which regime types have been free or not since 1970.

We join the fh dataset to the anckar dataset with inner_join(). Luckily, both the datasets have the cown and year variables with which we can merge.

Then we sumamrise the mean Freedom House level for each regime type.

anckar %>% 
  inner_join(fh, by = c("cown", "year")) %>% 
  filter(!is.na(regimebroadcat)) %>%
  group_by(regimebroadcat, year) %>% 
  summarise(mean_fh = mean(fh_total_reversed, na.rm = TRUE)) -> anckar_sum

We want to place a label for each regime line in the graph, so create a small dataframe with regime score information only about the first year.

anckar_start <- anckar_sum %>%
  group_by(regimebroadcat) %>% 
  filter(year == 1972) %>% 
  ungroup() 

And we pick some more jewel toned colours for the graph and put them in a vector.

my_palette <- c("#ca6702", "#bb3e03", "#ae2012", "#9b2226", "#001219", "#005f73", "#0a9396", "#94d2bd", "#ee9b00")

And we graph it out

anckar_sum %>%
  ggplot(aes(x = year, y = mean_fh, groups = as.factor(regimebroadcat))) + 
  geom_point(aes(color = regimebroadcat), alpha = 0.7, size = 2) + 
  geom_line(aes(color = regimebroadcat), alpha = 0.7, size = 2) +
  ggrepel::geom_label_repel(data = anckar_start, hjust = 1.5,
            aes(x = year,
                y = mean_fh,
                color = regimebroadcat,
                label = regimebroadcat),
            alpha = 0.7,
            show.legend = FALSE, 
            size = 9) + 
  scale_color_manual(values = my_palette) +
  expand_limits(x = 1965) +  
  ggthemes::theme_pander() + 
  theme(legend.position = "none",
        axis.text = element_text(size = 30, colour ="grey40")) 

We can also use map data that comes with the tidyverse() package.

To merge the countries easily, I add a cown variable to this data.frame

world_map <- map_data("world")

world_map %<>% 
  mutate(cown = countrycode::countrycode(region, "country.name", "cown"))

I want to only look at regimes types in the final year in the dataset – which is 2018 – so we filter only one year before we merge with the map data.frame.

The geom_polygon() part is where we indiciate the variable we want to plot. In our case it is the regime category

anckar %>% 
 filter(year == max(year)) %>%
  inner_join(world_map, by = c("cown")) %>%
  mutate(regimebroadcat = ifelse(region == "Libya", 'Military rule', regimebroadcat)) %>% 
  ggplot(aes(x = long, y = lat, group = group)) + 
  geom_polygon(aes(fill = regimebroadcat), color = "white", size = 1) 
Bill Murray Laughing GIF - Find & Share on GIPHY

We can next look at the PIPE dataset and see which countries have been uninterrupted republics over time.

pipe <- democracyData::redownload_pipe()

We graph out the max_republic_age variable with geom_bar()


pipe %>% 
  mutate(iso_lower = tolower(countrycode::countrycode(PIPE_cowcodes, "cown", "iso2c"))) %>% 
  mutate(country_name = countrycode::countrycode(PIPE_cowcodes, "cown", "country.name")) %>% 
  filter(year == max(year)) %>% 
  filter(max_republic_age > 100) %>% 
  ggplot(aes(x = reorder(country_name, max_republic_age), y = max_republic_age)) + 
  geom_bar(stat = "identity", width = 0.7, aes(fill = as.factor(europe))) +
  ggflags::geom_flag(aes(y = max_republic_age, x = country_name, 
                         country = iso_lower), size = 15) + 
  coord_flip() +  ggthemes::theme_pander() -> pipe_plot

And fix up some aesthetics:

pipe_plot + 
  theme(axis.text = element_text(size = 30),
        legend.text = element_text(size = 30),
        legend.title = element_blank(),
        axis.title = element_blank(),
        legend.position = "bottom") + 
  labs(y= "", x = "") + 
scale_fill_manual(values =  c("#d62828", "#457b9d"),
 labels = c("Former British Settler Colony", "European Country")) 

I added the header and footer in Canva.com

Bill Murray Ok GIF - Find & Share on GIPHY

Download democracy data with democracyData package in R

Packages we will need:

library(democracyData)
library(tidyverse)
library(magrittr)       # for pipes
library(ggstream)       # proportion plots
library(ggthemes)       # nice ggplot themes
library(forcats)        # reorder factor variables
library(ggflags)        # add flags
library(peacesciencer)  # more great polisci data
library(countrycode)    # add ISO codes to countries

This blog will highlight some quick datasets that we can download with this nifty package.

To install the democracyData package, it is best to do this via the github of Xavier Marquez:

remotes::install_github("xmarquez/democracyData", force = TRUE)
library(democracyData)

We can download the dataset from the Democracy and Dictatorship Revisited paper by Cheibub Gandhi and Vreeland (2010) with the redownload_pacl() function. It’s all very simple!

pacl <- redownload_pacl()
Happy Maya Rudolph GIF by PeacockTV - Find & Share on GIPHY

This gives us over 80 variables, with information on things such as regime type, geographical data, the name and age of the leaders, and various democracy variables.

We are going to focus on the different regimes across the years.

The six-fold regime classification Cheibub et al (2010) present is rooted in the dichotomous classification of regimes as democracy and dictatorship introduced in Przeworski et al. (2000). They classify according to various metrics, primarily by examining the way in which governments are removed from power and what constitutes the “inner sanctum” of power for a given regime. Dictatorships can be distinguished according to the characteristics of these inner sanctums. Monarchs rely on family and kin networks along with consultative councils; military rulers confine key potential rivals from the armed forces within juntas; and, civilian dictators usually create a smaller body within a regime party—a political bureau—to coopt potential rivals. Democracies highlight their category, depending on how the power of a given leadership ends

We can change the regime variable from numbers to a factor variables, describing the type of regime that the codebook indicates:

pacl %<>% 
  mutate(regime_name = ifelse(regime == 0, "Parliamentary democracies",
       ifelse(regime == 1, "Mixed democracies",
       ifelse(regime == 2, "Presidential democracies",
       ifelse(regime == 3, "Civilian autocracies",
       ifelse(regime == 4, "Military dictatorships",
       ifelse(regime ==  5,"Royal dictatorships", regime))))))) %>%
  mutate(regime = as.factor(regime)) 

Before we make the graph, we can give traffic light hex colours to the types of democracy. This goes from green (full democracy) to more oranges / reds (autocracies):

regime_palette <- c("Military dictatorships" = "#f94144", 
                    "Civilian autocracies" = "#f3722c", 
                    "Royal dictatorships" =  "#f8961e", 
                    "Mixed democracies" = "#f9c74f", 
                    "Presidential democracies" = "#90be6d", 
                    "Parliamentary democracies" = "#43aa8b")

We will use count() to count the number of countries in each regime type and create a variable n

pacl %>% 
  mutate(regime_name = as.factor(regime_name)) %>% 
  mutate(regime_name = fct_relevel(regime_name, 
 levels = c("Parliamentary democracies", 
           "Presidential democracies",
           "Mixed democracies",
           "Royal dictatorships",
           "Civilian autocracies",
           "Military dictatorships"))) %>% 
  group_by(year, un_continent_name) %>% 
  filter(!is.na(regime_name)) %>% 
  count(regime_name) %>% 
  ungroup() %>%  
  filter(un_continent_name != "") %>%
  filter(un_continent_name != "Oceania") -> pacl_count
Cant Handle It Kristen Wiig GIF by Saturday Night Live - Find & Share on GIPHY

We have all the variables we need.

We can now graph the count variables across different regions.

pacl_count %>% 
  ggplot(aes(x = year, y = n, 
             groups = regime_name, 
             fill = regime_name)) +
  ggstream::geom_stream(type = "proportion") + 
  facet_wrap(~un_continent_name) + 
  scale_fill_manual(values = regime_palette) + 
  ggthemes::theme_fivethirtyeight() + 
  theme(legend.title = element_blank(),
        text = element_text(size = 30)) 

I added the title and source header / footer section on canva.com to finish the graph.

Of course, the Cheibub et al (2010) dataset is not the only one that covers types of regimes.

Curtis Bell in 2016 developed the Rulers, Elections, and Irregular Governance Dataset (REIGN) dataset.

This describes political conditions in every country (including tenures and personal characteristics of world leaders, the types of political institutions and political regimes in effect, election outcomes and election announcements, and irregular events like coups)

Again, to download this dataset with the democracyData package, it is very simple:

reign <- download_reign()
Saturday Night Live Happy Dance GIF - Find & Share on GIPHY

I want to compare North and South Korea since their independence from Japan and see the changes in regimes and democracy scores over the years.

Next, we can easily download Freedom House or Polity 5 scores.

The Freedom House Scores default dataset ranges from 1972 to 2020, covering around 195 countries (depending on the year)

fh <- download_fh()

Alternatively, we can look at Polity Scores. This default dataset countains around 190 ish countries (again depending on the year and the number of countries in existance at that time) and covers a far longer range of years; from 1880 to 2018.

polityiv <- redownload_polityIV()

Alternatively, to download democracy scores, we can also use the peacesciencer dataset. Click here to read more about this package:

democracy_scores <- peacesciencer::create_stateyears() %>% 
  add_gwcode_to_cow() %>%
  add_democracy() 

With inner_join() we can merge these two datasets together:

reign %>% 
  select(ccode = cown, everything()) %>% 
  inner_join(democracy_scores, by = c("year", "ccode")) -> reign_demo

We next choose the years and countries for our plot.

Also, for the geom_flag() we will need the country name to be lower case ISO code. Click here to read more about the ggflags package.

reign_demo %>% 
    filter(year > 1945) %>% 
    mutate(gwf_regimetype = str_to_title(gwf_regimetype)) %>% 
    mutate(iso2c_lower = tolower(countrycode::countrycode(reign_country, "country.name", "iso2c"))) %>% 
filter(reign_country == "Korea North" | reign_country == "Korea South") -> korea_reign

We may to use specific hex colours for our graphs. I always prefer these deeper colours, rather than the pastel defaults that ggplot uses. I take them from coolors.co website!

korea_palette <- c("Military" = "#5f0f40",
                   "Party-Personal" = "#9a031e",
                   "Personal" = "#fb8b24",
                   "Presidential" = "#2a9d8f",
                   "Parliamentary" = "#1e6091")

We will add a flag to the start of the graph, so we create a mini dataset that only has the democracy scores for the first year in the dataset.

  korea_start <- korea_reign %>%
    group_by(reign_country) %>% 
    slice(which.min(year)) %>% 
    ungroup() 

Next we plot the graph

korea_reign %>% 
 ggplot(aes(x = year, y = v2x_polyarchy, groups = reign_country))  +
    geom_line(aes(color = gwf_regimetype), 
         size = 7, alpha = 0.7, show.legend = FALSE) +
    geom_point(aes(color = gwf_regimetype), size = 7, alpha = 0.7) +
    ggflags::geom_flag(data = korea_start, 
       aes(y = v2x_polyarchy, x = 1945, country = iso2c_lower), 
           size = 20) -> korea_plot

And then work on the aesthetics of the plot:

korea_plot + ggthemes::theme_fivethirtyeight() + 
    ggtitle("Electoral democracy on Korean Peninsula") +
    labs(subtitle = "Sources: Teorell et al. (2019) and Curtis (2016)") +
    xlab("Year") + 
    ylab("Democracy Scores") + 
    theme(plot.title = element_text(face = "bold"),
      axis.ticks = element_blank(),
      legend.box.background = element_blank(),
      legend.title = element_blank(),
      legend.text = element_text(size = 40),
      text = element_text(size = 30)) +
    scale_color_manual(values = korea_palette) + 
    scale_x_continuous(breaks = round(seq(min(korea_reign$year), max(korea_reign$year), by = 5),1))

While North Korea has been consistently ruled by the Kim dynasty, South Korea has gone through various types of government and varying levels of democracy!

References

Cheibub, J. A., Gandhi, J., & Vreeland, J. R. (2010). . Public choice143(1), 67-101.

Przeworski, A., Alvarez, R. M., Alvarez, M. E., Cheibub, J. A., Limongi, F., & Neto, F. P. L. (2000). Democracy and development: Political institutions and well-being in the world, 1950-1990 (No. 3). Cambridge University Press.

Scrape and graph election polling data from Wikipedia

Packages we will need:

library(rvest)
library(tidyverse)
library(magrittr)
library(forcats)
library(janitor)

With the Korean Presidential elections coming up, I wanted to graph the polling data since the beginning of this year.

Happy Paul Rudd GIF by Saturday Night Live - Find & Share on GIPHY

The data we can use is all collated together on Wikipedia.

Click here to read more about using the rvest package for scraping data from websites and click here to read the CRAN PDF for the package.

poll_html <- read_html("https://en.wikipedia.org/wiki/2022_South_Korean_presidential_election")

poll_tables <- poll_html %>% html_table(header = TRUE, fill = TRUE)

There are 22 tables on the page in total.

I count on the page that the polling data is the 16th table on the page, so extract index [[16]] from the list

feb_poll <- poll_tables[[16]]
View(feb_poll)

It is a bit messy, so we will need to do a bit of data cleaning before we can graph.

John Mulaney Snl GIF by Saturday Night Live - Find & Share on GIPHY

First the names of many variables are missing or on row 2 / 3 of the table, due to pictures and split cells in Wikipedia.

 [1] "Polling firm / Client" "Polling firm / Client" "Fieldwork  date"       "Sample  size" "Margin of  error"     
 [6] ""       ""      ""     ""      ""                     
[11] ""  "Others/Undecided"   "Lead"   

The clean_names() function from the janitor package does a lot of the brute force variable name cleaning!

feb_poll %<>% clean_names()

We now have variable names rather than empty column names, at least.

 [1] "polling_firm_client" "polling_firm_client_2" "fieldwork_date"        "sample_size"  "margin_of_error"      
 [6] "x"  "x_2"  "x_3"  "x_4"  "x_5"                  
[11] "x_6"  "others_undecided"   "lead"

We can choose the variables we want and rename the x variables with the names of each candidate, according to Wikipedia.

feb_poll %<>% 
  select(fieldwork_date, 
         Lee = x, 
         Yoon = x_2,
         Shim = x_3,
         Ahn = x_4, 
         Kim = x_5, 
         Heo = x_6,
         others_undecided)

We then delete the rows that contain text not related to the poll number values.

feb_poll = feb_poll[-25,]
feb_poll = feb_poll[-81,]
feb_poll = feb_poll[-1,]

I want to clean up the fieldwork_date variable and convert it from character to Date class.

First I found that very handy function on Stack Overflow that extracts the last n characters from a string variable.

substrRight <- function(x, n){
  substr(x, nchar(x)-n+1, nchar(x))
}

If we look at the table, some of the surveys started in Feb but ended in March. We want to extract the final section (i.e. the March section) and use that.

So we use grepl() to find rows that have both Feb AND March, and just extract the March section. If it only has one of those months, we leave it as it is.

feb_poll %<>% 
  mutate(clean_date = ifelse(grepl("Feb", fieldwork_date) & grepl("Mar", fieldwork_date), substrRight(fieldwork_date, 5), fieldwork_date))

Next want to extract the three letter date from this variables and create a new month variable

feb_poll %<>%
  mutate(month = substrRight(clean_date, 3)) 

Following that, we use the parse_number() function from tidyr package to extract the first number found in the string and create a day_number varible (with integer class now)

 feb_poll %<>%
   mutate(day_number = parse_number(clean_date))   

We want to take these two variables we created and combine them together with the unite() function from tidyr again! We want to delete the variables after we unite them. But often I want to keep the original variables, so usually I change the argument remove to FALSE.

We indicate we want to have nothing separating the vales with the sep = "" argument

 feb_poll %<>%
     unite("date", day_number:month, sep = "", remove = TRUE)

And we convert this new date into Date class with as.Date() function.

Here is a handy cheat sheet to help choose the appropriate % key so the format recognises the dates. I will never memorise these values, so I always need to refer to this site.

We have days as numbers (1, 2, 3) and abbreviated 3 character month (Jan, Feb, Mar), so we choose %d and %b

feb_poll %<>%
  mutate(dates_format = as.Date(date, "%d%b")) %>% 
  select(dates_format, Lee:others_undecided) 

Next, we will use the pivot_longer() function to combine all the poll number values into one column. This will make it far easier to plot later.

feb_poll %<>%
  pivot_longer(!dates_format, names_to = "candidate", values_to = "favour") 

After than, we need to clean the actual numbers, remove the percentage signs and convert from character to number class. We use the str_extract() and the regex code to extract the number and not keep the percentage sign.

feb_poll %<>%
    mutate(candidate = as.factor(candidate),
 favour_percent = str_extract(favour, "\\d+\\.*\\d*")) %>% 
   mutate(favour_percent = as.integer(favour_percent)) 

Some of the different polls took place on the same day. So we will take the average poll favourability value for each candidate on each day with the group_by() function

feb_poll %<>%
  group_by(dates_format, candidate) %>% 
  mutate(favour_percent_mean = mean(favour_percent, na.rm = TRUE)) %>% 
  ungroup() %>% 
  select(candidate, dates_format, favour_percent_mean) 

And this is how the cleaned up data should look!

We repeat for the 17th and 16th tables, which contain data going back to the beginning of January 2022

early_feb_poll <- poll_tables[[17]]
early_feb_poll = early_feb_poll[-37,]
early_feb_poll = early_feb_poll[-1,]

We repeat the steps from above with early Feb in one chunk

early_feb_poll %<>%
  clean_names() %>% 
  mutate(month = substrRight(fieldwork_date, 3))  %>% 
  mutate(day_number = parse_number(fieldwork_date)) %>%
  unite("date", day_number:month, sep = "", remove = FALSE) %>% 
  mutate(dates_format = as.Date(date, "%d%b")) %>% 
  select(dates_format, 
         Lee = lee_jae_myung, 
         Yoon = yoon_seok_youl,
         Shim = sim_sang_jung,
         Ahn = ahn_cheol_soo, 
         Kim = kim_dong_yeon, 
         Heo = huh_kyung_young,
         others_undecided) %>% 
  pivot_longer(!dates_format, names_to = "candidate", values_to = "favour") %>% 
  mutate(candidate = as.factor(candidate),
         favour_percent = str_extract(favour, "\\d+\\.*\\d*")) %>% 
  mutate(favour_percent = as.integer(favour_percent)) %>% 
  group_by(dates_format, candidate) %>% 
  mutate(favour_percent_mean = mean(favour_percent, na.rm = TRUE)) %>% 
  ungroup() %>% 
  select(candidate, dates_format, favour_percent_mean)

And we use rbind() to combine the two data.frames

polls <- rbind(feb_poll, early_feb_poll)

Next we repeat with January data:

jan_poll <- poll_tables[[18]]

jan_poll = jan_poll[-34,]
jan_poll = jan_poll[-1,]

jan_poll %<>% 
  clean_names() %>% 
  mutate(month = substrRight(fieldwork_date, 3))  %>% 
  mutate(day_number = parse_number(fieldwork_date)) %>%   # drops any non-numeric characters before or after the first number. 
  unite("date", day_number:month, sep = "", remove = FALSE) %>% 
  mutate(dates_format = as.Date(date, "%d%b")) %>% 
  select(dates_format, 
         Lee = lee_jae_myung, 
         Yoon = yoon_seok_youl,
         Shim = sim_sang_jung,
         Ahn = ahn_cheol_soo, 
         Kim = kim_dong_yeon, 
         Heo = huh_kyung_young,
         others_undecided) %>% 
  pivot_longer(!dates_format, names_to = "candidate", values_to = "favour") %>% 
  mutate(candidate = as.factor(candidate),
         favour_percent = str_extract(favour, "\\d+\\.*\\d*")) %>% 
  mutate(favour_percent = as.integer(favour_percent)) %>% 
  group_by(dates_format, candidate) %>% 
  mutate(favour_percent_mean = mean(favour_percent, na.rm = TRUE)) %>% 
  ungroup() %>% 
  select(candidate, dates_format, favour_percent_mean)

And bind to our combined data.frame:

polls <- rbind(polls, jan_poll)

We can create variables to help us filter different groups of candidates. If we want to only look at the largest candidates, we can makes an important variable and then filter

We can lump the candidates that do not have data from every poll (i.e. the smaller candidate) and add them into the “other_undecided” category with the fct_lump_min() function from the forcats package

polls %>% 
  mutate(important = ifelse(candidate %in% c("Ahn", "Yoon", "Lee", "Shim"), 1, 0)) %>% 
  mutate(few_candidate = fct_lump_min(candidate, min = 110, other_level = "others_undecided")) %>% 
  group_by(few_candidate, dates_format) %>% 
  filter(important == 1) -> poll_data

I want to only look at the main two candidates from the main parties that have been polling in the 40% range – Lee and Yoon – as well as the data for Ahn (who recently dropped out and endorsed Yoon).

poll_data %>% 
  filter(candidate %in% c("Lee", "Yoon", "Ahn")) -> lee_yoon_data

We take the official party hex colors for the graph and create a vector to use later with the scale_color_manual() function below:

party_palette <- c(
  "Ahn" = "#df550a",
  "Lee" = "#00a0e2",
  "Yoon" = "#e7001f")

And we plot the variables.

lee_yoon_data %>% 
  ggplot(aes(x = dates_format, y = favour_percent_mean,
             groups = candidate, color = candidate)) + 
  geom_line( size = 2, alpha = 0.8) +
  geom_point(fill = "#5e6472", shape = 21, size = 4, stroke = 3) + 
  labs(title = "Polling data for Korean Presidential Election", subtitle = "Source: various polling companies, via Wikipedia") -> poll_graph

The bulk of aesthetics for changing the graph appearance in the theme()

poll_graph + theme(panel.border = element_blank(),
        legend.position = "bottom",        
        text = element_text(size = 15, color = "white"),
        plot.title = element_text(size = 40),
        legend.title = element_blank(),
        legend.text = element_text(size = 50, color = "white"),
        axis.text.y = element_text(size = 20), 
        axis.text.x = element_text(size = 20),
        legend.background = element_rect(fill = "#5e6472"),
        axis.title = element_blank(),
        axis.text = element_text(color = "white", size = 20),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_blank(),
        panel.grid.minor.x = element_blank(),
        legend.key = element_rect(fill = "#5e6472"),
        plot.background = element_rect(fill = "#5e6472"),
        panel.background = element_rect(fill = "#5e6472")) +
  scale_color_manual(values = party_palette) 

Last, with the annotate() functions, we can also add an annotation arrow and text to add some more information about Ahn Cheol-su the candidate dropping out.

  annotate("text", x = as.Date("2022-02-11"), y = 13, label = "Ahn dropped out just as the polling blackout began", size = 10, color = "white") +
  annotate(geom = "curve", x = as.Date("2022-02-25"), y = 13, xend = as.Date("2022-03-01"), yend = 10, 
    curvature = -.3, arrow = arrow(length = unit(2, "mm")), size = 1, color = "white")

We will just have to wait until next Wednesday / Thursday to see who is the winner ~

Over It Reaction GIF by Saturday Night Live - Find & Share on GIPHY

Exploratory Data Analysis and Descriptive Statistics for Political Science Research in R

Packages we will use:

library(tidyverse)      # of course
library(ggridges)       # density plots
library(GGally)         # correlation matrics
library(stargazer)      # tables
library(knitr)          # more tables stuff
library(kableExtra)     # more and more tables
library(ggrepel)        # spread out labels
library(ggstream)       # streamplots
library(bbplot)         # pretty themes
library(ggthemes)       # more pretty themes
library(ggside)         # stack plots side by side
library(forcats)        # reorder factor levels

Before jumping into any inferentional statistical analysis, it is helpful for us to get to know our data. For me, that always means plotting and visualising the data and looking at the spread, the mean, distribution and outliers in the dataset.

Before we plot anything, a simple package that creates tables in the stargazer package. We can examine descriptive statistics of the variables in one table.

Click here to read this practically exhaustive cheat sheet for the stargazer package by Jake Russ. I refer to it at least once a week.

I want to summarise a few of the stats, so I write into the summary.stat() argument the number of observations, the mean, median and standard deviation.

The kbl() and kable_classic() will change the look of the table in R (or if you want to copy and paste the code into latex with the type = "latex" argument).

In HTML, they do not appear.

Seth Meyers Ok GIF by Late Night with Seth Meyers - Find & Share on GIPHY

To find out more about the knitr kable tables, click here to read the cheatsheet by Hao Zhu.

Choose the variables you want, put them into a data.frame and feed them into the stargazer() function

stargazer(my_df_summary, 
          covariate.labels = c("Corruption index",
                               "Civil society strength", 
                               'Rule of Law score',
                               "Physical Integerity Score",
                               "GDP growth"),
          summary.stat = c("n", "mean", "median", "sd"), 
          type = "html") %>% 
  kbl() %>% 
  kable_classic(full_width = F, html_font = "Times", font_size = 25)
StatisticNMeanMedianSt. Dev.
Corruption index1790.4770.5190.304
Civil society strength1790.6700.8050.287
Rule of Law score1737.4517.0004.745
Physical Integerity Score1790.6960.8070.284
GDP growth1630.0190.0200.032

Next, we can create a barchart to look at the different levels of variables across categories. We can look at the different regime types (from complete autocracy to liberal democracy) across the six geographical regions in 2018 with the geom_bar().

my_df %>% 
  filter(year == 2018) %>%
  ggplot() +
  geom_bar(aes(as.factor(region),
               fill = as.factor(regime)),
           color = "white", size = 2.5) -> my_barplot

And we can add more theme changes

my_barplot + bbplot::bbc_style() + 
  theme(legend.key.size = unit(2.5, 'cm'),
        legend.text = element_text(size = 15),
        text = element_text(size = 15)) +
  scale_fill_manual(values = c("#9a031e","#00a896","#e36414","#0f4c5c")) + 
  scale_color_manual(values = c("#9a031e","#00a896","#e36414","#0f4c5c")) 

This type of graph also tells us that Sub-Saharan Africa has the highest number of countries and the Middle East and North African (MENA) has the fewest countries.

However, if we want to look at each group and their absolute percentages, we change one line: we add geom_bar(position = "fill"). For example we can see more clearly that over 50% of Post-Soviet countries are democracies ( orange = electoral and blue = liberal democracy) as of 2018.

We can also check out the density plot of democracy levels (as a numeric level) across the six regions in 2018.

With these types of graphs, we can examine characteristics of the variables, such as whether there is a large spread or normal distribution of democracy across each region.

my_df %>% 
  filter(year == 2018) %>%
  ggplot(aes(x = democracy_score, y = region, fill = regime)) +
  geom_density_ridges(color = "white", size = 2, alpha = 0.9, scale = 2) -> my_density_plot

And change the graph theme:

my_density_plot + bbplot::bbc_style() + 
  theme(legend.key.size = unit(2.5, 'cm')) +
  scale_fill_manual(values = c("#9a031e","#00a896","#e36414","#0f4c5c")) + 
  scale_color_manual(values = c("#9a031e","#00a896","#e36414","#0f4c5c")) 

Click here to read more about the ggridges package and click here to read their CRAN PDF.

Next, we can also check out Pearson’s correlations of some of the variables in our dataset. We can make these plots with the GGally package.

The ggpairs() argument shows a scatterplot, a density plot and correlation matrix.

my_df %>%
  filter(year == 2018) %>%
  select(regime, 
         corruption, 
         civ_soc, 
         rule_law, 
         physical, 
         gdp_growth) %>% 
  ggpairs(columns = 2:5, 
          ggplot2::aes(colour = as.factor(regime), 
          alpha = 0.9)) + 
  bbplot::bbc_style() +
  scale_fill_manual(values = c("#9a031e","#00a896","#e36414","#0f4c5c")) + 
  scale_color_manual(values = c("#9a031e","#00a896","#e36414","#0f4c5c"))

Click here to read more about the GGally package and click here to read their CRAN PDF.

We can use the ggside package to stack graphs together into one plot.

There are a few arguments to add when we choose where we want to place each graph.

For example, geom_xsideboxplot(aes(y = freedom_house), orientation = "y") places a boxplot for the three Freedom House democracy levels on the top of the graph, running across the x axis. If we wanted the boxplot along the y axis we would write geom_ysideboxplot(). We add orientation = "y" to indicate the direction of the boxplots.

Next we indiciate how big we want each graph to be in the panel with theme(ggside.panel.scale = .5) argument. This makes the scatterplot take up half and the boxplot the other half. If we write .3, the scatterplot takes up 70% and the boxplot takes up the remainning 30%. Last we indicade scale_xsidey_discrete() so the graph doesn’t think it is a continuous variable.

We add Darjeeling Limited color palette from the Wes Anderson movie.

Click here to learn about adding Wes Anderson theme colour palettes to graphs and plots.

my_df %>%
 filter(year == 2018) %>% 
 filter(!is.na(fh_number)) %>% 
  mutate(freedom_house = ifelse(fh_number == 1, "Free", 
         ifelse(fh_number == 2, "Partly Free", "Not Free"))) %>%
  mutate(freedom_house = forcats::fct_relevel(freedom_house, "Not Free", "Partly Free", "Free")) %>% 
ggplot(aes(x = freedom_from_torture, y = corruption_level, colour = as.factor(freedom_house))) + 
  geom_point(size = 4.5, alpha = 0.9) +
  geom_smooth(method = "lm", color ="#1d3557", alpha = 0.4) +  
  geom_xsideboxplot(aes(y = freedom_house), orientation = "y", size = 2) +
  theme(ggside.panel.scale = .3) +
  scale_xsidey_discrete() +
  bbplot::bbc_style() + 
  facet_wrap(~region) + 
  scale_color_manual(values= wes_palette("Darjeeling1", n = 3))

The next plot will look how variables change over time.

We can check out if there are changes in the volume and proportion of a variable across time with the geom_stream(type = "ridge") from the ggstream package.

In this instance, we will compare urban populations across regions from 1800s to today.

my_df %>% 
  group_by(region, year) %>% 
  summarise(mean_urbanization = mean(urban_population_percentage, na.rm = TRUE)) %>% 
  ggplot(aes(x = year, y = mean_urbanization, fill = region)) +
  geom_stream(type = "ridge") -> my_streamplot

And add the theme changes

  my_streamplot + ggthemes::theme_pander() + 
  theme(
legend.title = element_blank(),
        legend.position = "bottom",
        legend.text = element_text(size = 25),
        axis.text.x = element_text(size = 25),
        axis.title.y = element_blank(),
        axis.title.x = element_blank()) +
  scale_fill_manual(values = c("#001219",
                               "#0a9396",
                               "#e9d8a6",
                               "#ee9b00", 
                               "#ca6702",
                               "#ae2012")) 

Click here to read more about the ggstream package and click here to read their CRAN PDF.

We can also look at interquartile ranges and spread across variables.

We will look at the urbanization rate across the different regions. The variable is calculated as the ratio of urban population to total country population.

Before, we will create a hex color vector so we are not copying and pasting the colours too many times.

my_palette <- c("#1d3557",
                "#0a9396",
                "#e9d8a6",
                "#ee9b00", 
                "#ca6702",
                "#ae2012")

We use the facet_wrap(~year) so we can separate the three years and compare them.

my_df %>% 
  filter(year == 1980 | year == 1990 | year == 2000)  %>% 
  ggplot(mapping = aes(x = region, 
                       y = urban_population_percentage, 
                       fill = region)) +
  geom_jitter(aes(color = region),
              size = 3, alpha = 0.5, width = 0.15) +
  geom_boxplot(alpha = 0.5) + facet_wrap(~year) + 
  scale_fill_manual(values = my_palette) +
  scale_color_manual(values = my_palette) + 
  coord_flip() + 
  bbplot::bbc_style()

If we want to look more closely at one year and print out the country names for the countries that are outliers in the graph, we can run the following function and find the outliers int he dataset for the year 1990:

is_outlier <- function(x) {
  return(x < quantile(x, 0.25) - 1.5 * IQR(x) | x > quantile(x, 0.75) + 1.5 * IQR(x))
}

We can then choose one year and create a binary variable with the function

my_df_90 <- my_df %>% 
  filter(year == 1990) %>% 
  filter(!is.na(urban_population_percentage))

my_df_90$my_outliers <- is_outlier(my_df_90$urban_population_percentage)

And we plot the graph:

my_df_90 %>% 
  ggplot(mapping = aes(x = region, y = urban_population_percentage, fill = region)) +
  geom_jitter(aes(color = region), size = 3, alpha = 0.5, width = 0.15) +
  geom_boxplot(alpha = 0.5) +
  geom_text_repel(data = my_df_90[which(my_df_90$my_outliers == TRUE),],
            aes(label = country_name), size = 5) + 
  scale_fill_manual(values = my_palette) +
  scale_color_manual(values = my_palette) + 
  coord_flip() + 
  bbplot::bbc_style() 

In the next blog post, we will look at t-tests, ANOVAs (and their non-parametric alternatives) to see if the difference in means / medians is statistically significant and meaningful for the underlying population.

Bo Burnham What GIF - Find & Share on GIPHY

Graphing Pew survey responses with ggplot in R

Packages we will need:

library(tidyverse)
library(forcats)
library(ggthemes)

We are going to look at a few questions from the 2019 US Pew survey on relations with foreign countries.

Data can be found by following this link:

We are going to make bar charts to plot out responses to the question asked to American participaints: Should the US cooperate more or less with some key countries? The countries asked were China, Russia, Germany, France, Japan and the UK.

Before we dive in, we can find some nice hex colors for the bar chart. There are four possible responses that the participants could give: cooperate more, cooperate less, cooperate the same as before and refuse to answer / don’t know.

pal <- c("Cooperate more" = "#0a9396",
         "Same as before" = "#ee9b00",
         "Don't know" = "#005f73",
         "Cooperate less" ="#ae2012")

We first select the questions we want from the full survey and pivot the dataframe to long form with pivot_longer(). This way we have a single column with all the different survey responses. that we can manipulate more easily with dplyr functions.

Then we summarise the data to count all the survey reponses for each of the four countries and then calculate the frequency of each response as a percentage of all answers.

Then we mutate the variables so that we can add flags. The geom_flag() function from the ggflags packages only recognises ISO2 country codes in lower cases.

After that we change the factors level for the four responses so they from positive to negative views of cooperation

pew %>% 
  select(id = case_id, Q2a:Q2f) %>% 
  pivot_longer(!id, names_to = "survey_question", values_to = "response")  %>% 
  group_by(survey_question, response) %>% 
  summarise(n = n()) %>%
  mutate(freq = n / sum(n)) %>% 
  ungroup() %>% 
  mutate(response_factor = as.factor(response)) %>% 
  mutate(country_question = ifelse(survey_question == "Q2a", "fr",
ifelse(survey_question == "Q2b", "gb",
ifelse(survey_question == "Q2c", "ru",
ifelse(survey_question == "Q2d", "cn",
ifelse(survey_question == "Q2e", "de",
ifelse(survey_question == "Q2f", "jp", survey_question))))))) %>% 
  mutate(response_string = ifelse(response_factor == 1, "Cooperate more",
ifelse(response_factor == 2, "Cooperate less",
ifelse(response_factor == 3, "Same as before",
ifelse(response_factor == 9, "Don't know", response_factor))))) %>% 
  mutate(response_string = fct_relevel(response_string, c("Cooperate less","Same as before","Cooperate more", "Don't know"))) -> pew_clean

We next use ggplot to plot out the responses.

We use the position = "stack" to make all the responses “stack” onto each other for each country. We use stat = "identity" because we are not counting each reponses. Rather we are using the freq variable we calculated above.

pew_clean %>%
  ggplot() +
  geom_bar(aes(x = forcats::fct_reorder(country_question, freq), y = freq, fill = response_string), color = "#e5e5e5", size = 3, position = "stack", stat = "identity") +
  geom_flag(aes(x = country_question, y = -0.05 , country = country_question), color = "black", size = 20) -> pew_graph

And last we change the appearance of the plot with the theme function

pew_graph + 
coord_flip() + 
  scale_fill_manual(values = pal) +
  ggthemes::theme_fivethirtyeight() + 
  ggtitle("Should the US cooperate more or less with the following country?") +
  theme(legend.title = element_blank(),
        legend.position = "top",
        legend.key.size = unit(2, "cm"),
        text = element_text(size = 25),
        legend.text = element_text(size = 20),
        axis.text = element_blank())

Lollipop plots with ggplot2 in R

Packages we will need:

library(tidyverse)
library(rvest)
library(ggflags)
library(countrycode)
library(ggpubr)

We will plot out a lollipop plot to compare EU countries on their level of income inequality, measured by the Gini coefficient.

A Gini coefficient of zero expresses perfect equality, where all values are the same (e.g. where everyone has the same income). A Gini coefficient of one (or 100%) expresses maximal inequality among values (e.g. for a large number of people where only one person has all the income or consumption and all others have none, the Gini coefficient will be nearly one).

To start, we will take data on the EU from Wikipedia. With rvest package, scrape the table about the EU countries from this Wikipedia page.

Click here to read more about the rvest pacakge

With the gsub() function, we can clean up the different variables with some regex. Namely delete the footnotes / square brackets and change the variable classes.

eu_site <- read_html("https://en.wikipedia.org/wiki/Member_state_of_the_European_Union")

eu_tables <- eu_site %>% html_table(header = TRUE, fill = TRUE)

eu_members <- eu_tables[[3]]

eu_members %<>% janitor::clean_names()  %>% 
  filter(!is.na(accession))

eu_members$iso3 <- countrycode::countrycode(eu_members$geo, "country.name", "iso3c")

eu_members$accession <- as.numeric(gsub("([0-9]+).*$", "\\1",eu_members$accession))

eu_members$name_clean <- gsub("\\[.*?\\]", "", eu_members$name)

eu_members$gini_clean <- gsub("\\[.*?\\]", "", eu_members$gini)

Next some data cleaning and grouping the year member groups into different decades. This indicates what year each country joined the EU. If we see clustering of colours on any particular end of the Gini scale, this may indicate that there is a relationship between the length of time that a country was part of the EU and their domestic income inequality level. Are the founding members of the EU more equal than the new countries? Or conversely are the newer countries that joined from former Soviet countries in the 2000s more equal. We can visualise this with the following mutations:

eu_members %>%
  filter(name_clean != "Totals/Averages") %>% 
  mutate(gini_numeric = as.numeric(gini_clean)) %>% 
  mutate(accession_decades = ifelse(accession < 1960, "1957", ifelse(accession > 1960 & accession < 1990, "1960s-1980s", ifelse(accession == 1995, "1990s", ifelse(accession > 2003, "2000s", accession))))) -> eu_clean 

To create the lollipop plot, we will use the geom_segment() functions. This requires an x and xend argument as the country names (with the fct_reorder() function to make sure the countries print out in descending order) and a y and yend argument with the gini number.

All the countries in the EU have a gini score between mid 20s to mid 30s, so I will start the y axis at 20.

We can add the flag for each country when we turn the ISO2 character code to lower case and give it to the country argument.

Click here to read more about the ggflags package

eu_clean %>% 
ggplot(aes(x= name_clean, y= gini_numeric, color = accession_decades)) +
  geom_segment(aes(x = forcats::fct_reorder(name_clean, -gini_numeric), 
                   xend = name_clean, y = 20, yend = gini_numeric, color = accession_decades), size = 4, alpha = 0.8) +
  geom_point(aes(color = accession_decades), size= 10) +
  geom_flag(aes(y = 20, x = name_clean, country = tolower(iso_3166_1_alpha_2)), size = 10) +
  ggtitle("Gini Coefficients of the EU countries") -> eu_plot

Last we add various theme changes to alter the appearance of the graph

eu_plot + 
coord_flip() +
ylim(20, 40) +
  theme(panel.border = element_blank(),
        legend.title = element_blank(),
        axis.title = element_blank(),
        axis.text = element_text(color = "white"),
        text= element_text(size = 35, color = "white"),
        legend.text = element_text(size = 20),
        legend.key = element_rect(colour = "#001219", fill = "#001219"),
        legend.key.width = unit(3, 'cm'),
        legend.position = "bottom",
        panel.grid.major.y = element_line(linetype="dashed"),
        plot.background = element_rect(fill = "#001219"),
        panel.background = element_rect(fill = "#001219"),
        legend.background = element_rect(fill = "#001219") )

We can see there does not seem to be a clear pattern between the year a country joins the EU and their level of domestic income inequality, according to the Gini score.

Of course, the Gini coefficient is not a perfect measurement, so take it with a grain of salt.

Another option for the lolliplot plot comes from the ggpubr package. It does not take the familiar aesthetic arguments like you can do with ggplot2 but it is very quick and the defaults look good!

eu_clean %>% 
  ggdotchart( x = "name_clean", y = "gini_numeric",
              color = "accession_decades",
              sorting = "descending",                      
              rotate = TRUE,                                
              dot.size = 10,   
              y.text.col = TRUE,
              ggtheme = theme_pubr()) + 
  ggtitle("Gini Coefficients of the EU countries") + 
  theme(panel.border = element_blank(),
        legend.title = element_blank(),
        axis.title = element_blank(),
        axis.text = element_text(color = "white"),
        text= element_text(size = 35, color = "white"),
        legend.text = element_text(size = 20),
        legend.key = element_rect(colour = "#001219", fill = "#001219"),
        legend.key.width = unit(3, 'cm'),
        legend.position = "bottom",
        panel.grid.major.y = element_line(linetype="dashed"),
        plot.background = element_rect(fill = "#001219"),
        panel.background = element_rect(fill = "#001219"),
        legend.background = element_rect(fill = "#001219") )

Bump charts for ranking with ggbump package in R

library(eurostat)
library(tidyverse)
library(magrittr)
library(ggthemes)
library(ggpbump)
library(ggflags)
library(countrycode)

Click here for Part 1 and here for Part 2 of the series on Eurostat data – explains how to download and visualise the Eurostat data

In this blog, we will look at government expenditure of the European Union!

Part 1 will go into detail about downloading Eurostat data with their package.

govt <- get_eurostat("gov_10a_main", fix_duplicated = TRUE)

Some quick data cleaning and then we can look at the variables in the dataset.

govt$year <- as.numeric(format(govt$time, format = "%Y"))
View(govt)

The numbers and letters are a bit incomprehensible. We can go to the Eurostat data browser site. It ascts as a codebook for all the variables we downloaded:

https://ec.europa.eu/eurostat/databrowser/product/page/GOV_10A_MAIN

I want to take the EU accession data from Wikipedia. Check out the Part 1 blog post to scrape the data.

govt$iso3 <- countrycode(govt$geo, "iso2c", "iso3c")

govt_df <- merge(govt, eu_members, by.x = "iso3", by.y = "iso_3166_1_alpha_3", all.x = TRUE)

We will look at general government spending of the countries from the 2004 accession.

Also we will choose data is government expenditure as a percentage of GDP.

govt_df %<>%
  filter(sector == "S13") %>%      # General government spending
  filter(accession == 2004) %>%    # For countries that joined 2004
  filter(unit == "PC_GDP") %>%     # Spending as percentage of GDP
  filter(na_item == "TE")          # Total expenditure

A little more data cleaning! To use the ggflags package, the ISO 2 character code needs to be in lower case.

Also we will use some regex to remove the strings in the square brackets from the dataset.

govt_df$iso2_lower <- tolower(govt_df$iso_3166_1_alpha_2)

govt_df$name_clean <- gsub("\\[.*?\\]", "", govt_df$name)

To put the flags at the start of the graph and names of the countries at the end of the lines, create mini dataframes with only information for the last year and first year:

last_time <- govt_df %>%
  group_by(geo) %>% 
  slice(which.max(year)) %>% 
  ungroup()

first_time <- govt_df %>%
  group_by(geo) %>% 
  slice(which.min(year)) %>% 
  ungroup()

I choose some nice hex colours from the coolors website. They need # in the strings to be acknowledged as hex colours by ggplot

add_hashtag <- function(my_vec){
  hash_vec <-  paste0('#', my_vec)
  return(hash_vec)
}

pal <- c("0affc2","ffb8d1","05e6dc","00ccf5","ff7700",
         "fa3c3b","f50076","b766b4","fd9c1e","ffcf00")

pal_hash <- add_hashtag(pal)

Now we can plot:

govt_df %>% 
  filter(geo != "CY" | geo != "MT") %>% 
  filter( year < 2020) %>% 
  ggplot(aes(x = year,
             y = values, group = name)) + 
  geom_text_repel(data = last_time, aes(label = name_clean, 
                                        color = name), 
                  size = 6, hjust = -3) +
  geom_point(aes(color = name)) + 
  geom_line(aes(color = name), size = 3, alpha = 0.8) +
  ggflags::geom_flag(data = first_time,
                     aes(x = year,
                         y = values,
                         country = iso2_lower),
                     size = 8) +
   scale_color_manual(values = pal_hash) +
  xlim(1994, 2021) + 
   ggthemes::theme_fivethirtyeight() +
  theme(panel.background = element_rect(fill = "#284b63"),
        legend.position = "none",
        axis.text.x = element_text(size = 20),
        axis.text.y = element_text(size = 20),
        
        panel.grid.major.y = element_line(color = "#495057",
                                          size = 0.5,
                                          linetype = 2),
        panel.grid.minor.y = element_line(color = "#495057",
                                          size = 0.5,
                                          linetype = 2)) +
  guides(colour = guide_legend(override.aes = list(size=10)))

Sometimes a simple line graph doesn’t easily show us the ranking of the countries over time.

The last graph was a bit cluttered, so we can choose the top average highest government expenditures to compare

govt_rank %>% 
  distinct(geo, mean_rank) %>% 
  top_n(6, mean_rank) %>%
  pull(geo) -> top_rank

We can look at a bump chart that ranks the different positions over time

govt_df %>% 
  filter(geo %in%  top_rank) %>% 
  group_by(year) %>%
  mutate(rank_budget = rank(-values, ties.method = "min")) %>%
  ungroup() %>% 
  group_by(geo) %>% 
  mutate(mean_rank = mean(values)) %>% 
  ungroup()  %>% 
  select(geo, iso2_lower, year, fifth_year, rank_budget, mean_rank) -> govt_rank

We recreate the last and first dataframes for the flags with the new govt_rank dataset.

last_time <- govt_rank %>%
  filter(geo %in% top_rank ) %>% 
  group_by(geo) %>% 
  slice(which.max(year)) %>% 
  ungroup()

first_time <- govt_rank %>%
  filter(geo %in% top_rank ) %>% 
  group_by(geo) %>% 
  slice(which.min(year)) %>% 
  ungroup()

All left to do is code the bump plot to compare the ranking of highest government expenditure as a percentage of GDP

govt_rank %>% 
  ggplot(aes(x = year, y = rank_budget, 
             group = country,
             color = country, fill = country)) +
  geom_point() +
  geom_bump(aes(), 
            size = 3, alpha = 0.8,
            lineend = "round") + 
  geom_flag(data = last_time %>%
              filter(year == max(year)),
            aes(country = iso2_lower ),
            size = 20,
            color = "black") +
  geom_flag(data = first_time %>%
              filter(year == max(year)),
            aes(country = iso2_lower),
            size = 20,
            color = "black") -> govt_bump

Last we change the theme aesthetics of the bump plot

govt_bump + theme(panel.background = element_rect(fill = "#284b63"),
      legend.position = "bottom",
      axis.text.x = element_text(size = 20),
      axis.text.y = element_text(size = 20),
      axis.line = element_line(color='black'),
      axis.title.x = element_blank(), 
      axis.title.y = element_blank(), 
      legend.title = element_blank(),
      legend.text = element_text(size = 20),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank()) + 
  guides(colour = guide_legend(override.aes = list(size=10))) + 
  scale_y_reverse(breaks = 1:100)

I added the title and moved the legend with canva.com, rather than attempt it with ggplots! I feel bad for cheating a bit.

How to download EU data with Eurostat package in R: Part 1 (with pyramid graphs)

library(eurostat)
library(tidyverse)
library(janitor)
library(ggcharts)
library(ggflags)
library(rvest)
library(countrycode)
library(magrittr)

Eurostat is the statistical office of the EU. It publishes statistics and indicators that enable comparisons between countries and regions.

With the eurostat package, we can visualise some data from the EU and compare countries. In this blog, we will create a pyramid graph and a Statista-style bar chart.

First, we use the get_eurostat_toc() function to see what data we can download. We only want to look at datasets.

available_data <- get_eurostat_toc()

available_datasets <- available_data %>% 
  filter(type == "dataset")

A simple dataset that we can download looks at populations. We can browse through the available datasets and choose the code id. We feed this into the get_eurostat() dataset.

demo <- get_eurostat(id = "demo_pjan", 
                     type = "label")

View(demo)

Some quick data cleaning. First changing the date to a numeric variable. Next, extracting the number from the age variable to create a numeric variable.

demo$year <- as.numeric(format(demo$time, format = "%Y"))

demo$age_number <- as.numeric(gsub("([0-9]+).*$", "\\1", demo$age))

Next we filter out the data we don’t need. For this graph, we only want the total columns and two years to compare.


demo %>%
  filter(age != "Total") %>%
  filter(age != "Unknown") %>% 
  filter(sex == "Total") %>% 
  filter(year == 1960 | year == 2019 ) %>% 
  select(geo, iso3, values, age_number) -> demo_two_years

I want to compare the populations of the founding EU countries (in 1957) and those that joined in 2004. I’ll take the data from Wikipedia, using the rvest package. Click here to learn how to scrape data from the Internet.

eu_site <- read_html("https://en.wikipedia.org/wiki/Member_state_of_the_European_Union")

eu_tables <- eu_site %>% html_table(header = TRUE, fill = TRUE)

eu_members <- eu_tables[[3]]

eu_members %<>% janitor::clean_names()  %>% 
filter(!is.na(accession))

Some quick data cleaning to get rid of the square bracket footnotes from the Wikipedia table data.

eu_members$accession <- as.numeric(gsub("([0-9]+).*$", "\\1",eu_members$accession))

eu_members$name_clean <- gsub("\\[.*?\\]", "", eu_members$name)

We merge the two datasets, on the same variable. In this case, I will use the ISO3C country codes (from the countrycode package). Using the names of each country is always tricky (I’m looking at you, Czechia / Czech Republic).

demo_two_years$iso3 <- countrycode::countrycode(demo_two_years$geo, "country.name, "iso3c")

my_pyramid <- merge(demo_two_years, eu_members, by.x = "iso3", by.y = "iso_3166_1_alpha_3", all.x = TRUE)

We will use the pyramid_chart() function from the ggcharts package. Click to read more about this function.

The function takes the age group (we go from 1 to 99 years of age), the number of people in that age group and we add year to compare the ages in 1960 versus in 2019.

The first graph looks at the countries that founded the EU in 1957.

my_pyramid %>%  
  filter(!is.na(age_number)) %>%  
  filter(accession == 1957 ) %>% 
  arrange(age_number) %>% 
  group_by(year, age_number) %>% 
  summarise(mean_age = mean(values, na.rm = TRUE)) %>% 
  ungroup() %>% 
  pyramid_chart(age_number, mean_age, year,
                bar_colors = c("#9a031e", "#0f4c5c")) 
Source: Eurostat

The second graph is the same, but only looks at the those which joined in 2004.

my_pyramid %>%  
  filter(!is.na(age_number)) %>%  
  filter(accession == 2004 ) %>% 
  arrange(age_number) %>% 
  group_by(year, age_number) %>% 
  summarise(mean_age = mean(values, na.rm = TRUE)) %>% 
  ungroup() %>% 
  pyramid_chart(age_number, mean_age, year,
                bar_colors = c("#9a031e", "#0f4c5c")) 

Next we will use the Eurostat data on languages in the EU and compare countries in a bar chart.

I want to try and make this graph approximate the style of Statista graphs. It is far from identical but I like the clean layout that the Statista website uses.

Similar to above, we add the code to the get_eurostat() function and claen the data like above.

lang <- get_eurostat(id = "edat_aes_l22", 
                     type = "label")

lang$year <- as.numeric(format(lang$time, format = "%Y"))

lang$iso2 <- tolower(countrycode(lang$geo, "country.name", "iso2c"))

lang %>% 
  mutate(geo = ifelse(geo == "Germany (until 1990 former territory of the FRG)", "Germany", 
                      ifelse(geo == "European Union - 28 countries (2013-2020)", "EU", geo))) %>% 
  filter(n_lang == "3 languages or more") %>% 
  filter(year == 2016) %>% 
  filter(age == "From 25 to 34 years") %>% 
  filter(!is.na(iso2)) %>% 
  group_by(geo, year) %>% 
  mutate(mean_age = mean(values, na.rm = TRUE)) %>% 
  arrange(mean_age) -> lang_clean

Next we will create bar chart with the stat = "identity" argument.

We need to make sure our ISO2 country code variable is in lower case so that we can add flags to our graph with the ggflags package. Click here to read more about this package

lang_clean %>%
  ggplot(aes(x = reorder(geo, mean_age), y = mean_age)) + 
  geom_bar(stat = "identity", width = 0.7, color = "#0a85e5", fill = "#0a85e5") + 
  ggflags::geom_flag(aes(x = geo, y = -1, country = iso2), size = 8) +
  geom_text(aes(label= values), position = position_dodge(width = 0.9), hjust = -0.5, size = 5, color = "#000500") + 
  labs(title = "Percentage of people that speak 3 or more languages",
       subtitle = ("(% of overall population)"),
       caption = "         Source: Eurostat ") +
  xlab("") + 
  ylab("") -> lang_plot 
  

To try approximate the Statista graphs, we add many arguments to the theme() function for the ggplot graph!

lang_plot + coord_flip() + 
  expand_limits(y = 65) + 
  ggthemes::theme_pander() + 
  theme(plot.background = element_rect(color = "#f5f9fc"),
        panel.grid = element_line(colour = "#f5f9fc"),
        # axis.title.x = element_blank(),
        axis.text.x = element_blank(),
        axis.text.y = element_text(color = "#000500", size = 16),
        # axis.title.y = element_blank(),
        axis.ticks.x = element_blank(),
        text = element_text(family = "Gadugi"),
        plot.title = element_text(size = 28, color = "#000500"),
        plot.subtitle = element_text(size = 20, color = "#484e4c"),
        plot.caption = element_text(size = 20, color = "#484e4c") )

Next, click here to read Part 2 about visualizing Eurostat data with maps

Compare Irish census years with compareBars and csodata package in R

Packages we will need:

library(csodata)
library(janitor)
library(ggcharts)
library(compareBars)
library(tidyverse)

First, let’s download population data from the Irish census with the Central Statistics Office (CSO) API package, developed by Conor Crowley.

You can search for the data you want to analyse via R or you can go to the CSO website and browse around the site.

I prefer looking through the site because sometimes I stumble across a dataset I didn’t even think to look for!

Keep note of the code beside the red dot star symbol if you’re looking around for datasets.

Click here to check out the CRAN PDF for the CSO package.

You can search for keywords with cso_search_toc(). I want total population counts for the whole country.

cso_search_toc("total population")

We can download the variables we want by entering the code into the cso_get_data() function

irish_pop <- cso_get_data("EY007")
View(irish_pop)

The EY007 code downloads population census data in both 2011 and 2016 at every age.

It needs a little bit of tidying to get it ready for graphing.

irish_pop %<>%  
  clean_names()

First, we can be lazy and use the clean_names() function from the janitor package.

GIF by The Good Place - Find & Share on GIPHY

Next we can get rid of the rows that we don’t want with select().

Then we use the pivot_longer() function to turn the data.frame from wide to long and to turn the x2011 and x2016 variables into one year variable.

irish_pop %>% 
  filter(at_each_year_of_age == "Population") %>% 
  filter(sex == 'Both sexes') %>% 
  filter(age_last_birthday != "All ages") %>% 
  select(!statistic) %>% 
  select(!sex) %>% 
  select(!at_each_year_of_age) -> irish_wide

irish_wide %>% 
  pivot_longer(!age_last_birthday,
    names_to = "year", 
    values_to = "pop_count",
    values_drop_na = TRUE) %>% 
    mutate(year = as.factor(year)) -> irish_long

No we can create our pyramid chart with the pyramid_chart() from the ggcharts package. The first argument is the age category for both the 2011 and 2016 data. The second is the actual population counts for each year. Last, enter the group variable that indicates the year.

irish_long %>%   
  pyramid_chart(age_last_birthday, pop_count, year)

One problem with the pyramid chart is that it is difficult to discern any differences between the two years without really really examining each year.

One way to more easily see the differences with the compareBars function

The compareBars package created by David Ranzolin can help to simplify comparative bar charts! It’s a super simple function to use that does a lot of visualisation leg work under the hood!

First we need to pivot the data.frame back to wide format and then input the age, and then the two groups – x2011 and x2016 – in the compareBars() function.

We can add more labels and colors to customise the graph also!

irish_long %>% 
  pivot_wider(names_from = year, values_from = pop_count) %>% 
  compareBars(age_last_birthday, x2011, x2016, orientation = "horizontal",
              xLabel = "Population",
              yLabel = "Year",
              titleLabel = "Irish Populations",
              subtitleLabel = "Comparing 2011 and 2016",
              fontFamily = "Arial",
              compareVarFill1 = "#FE6D73",
              compareVarFill2 = "#17C3B2") 

We can see that under the age of four-ish, 2011 had more at the time. And again, there were people in their twenties in 2011 compared to 2016.

However, there are more older people in 2016 than in 2011.

Similar to above it is a bit busy! So we can create groups for every five age years categories and examine the broader trends with fewer horizontal bars.

First we want to remove the word “years” from the age variable and convert it to a numeric class variable. We can easily do this with the parse_number() function from the readr package

irish_wide %<>% 
mutate(age_num = readr::parse_number(as.character(age_last_birthday))) 

Next we can group the age years together into five year categories, zero to 5 years, 6 to 10 years et cetera.

We use the cut() function to divide the numeric age_num variable into equal groups. We use the seq() function and input age 0 to 100, in increments of 5.

irish_wide$age_group = cut(irish_wide$age_num, seq(0, 100, 5))

Next, we can use group_by() to calculate the sum of each population number in each five year category.

And finally, we use the distinct() function to remove the duplicated rows (i.e. we only want to keep the first row that gives us the five year category’s population count for each category.

irish_wide %<>% 
  group_by(age_group) %>% 
  mutate(five_year_2011 = sum(x2011)) %>% 
  mutate(five_year_2016 = sum(x2016)) %>% 
  distinct(five_year_2011, five_year_2016, .keep_all = TRUE)

Next plot the bar chart with the five year categories

compareBars(irish_wide, age_group, five_year_2011, five_year_2016, orientation = "horizontal",
              xLabel = "Population",
              yLabel = "Year",
              titleLabel = "Irish Populations",
              subtitleLabel = "Comparing 2011 and 2016",
              fontFamily = "Arial",
              compareVarFill1 = "#FE6D73",
              compareVarFill2 = "#17C3B2") 

irish_wide2 %>% 
  select(age_group, five_year_2011, five_year_2016) %>% 
  pivot_longer(!age_group,
             names_to = "year", 
             values_to = "pop_count",
             values_drop_na = TRUE) %>% 
  mutate(year = as.factor(year)) -> irishlong2

irishlong2 %>%   
  pyramid_chart(age_group, pop_count, year)

The Good Place Yes GIF by NBC - Find & Share on GIPHY

Make Wes Anderson themed graphs with wesanderson package in R

Well this is just delightful! This package was created by Karthik Ram.

install.packages("wesanderson")
library(wesanderson)
library(hrbrthemes) # for plot themes
library(gapminder) # for data
library(ggbump) # for the bump plot

After you install the wesanderson package, you can

  1. create a ggplot2 graph object
  2. choose the Wes Anderson color scheme you want to use and create a palette object
  3. add the graph object and and the palette object and behold your beautiful data
Wes Anderson Trailer GIF - Find & Share on GIPHY
wes_palette(name, n, type = c("discrete", "continuous"))

To generate a vector of colors, the wes_palette() function requires:

  • name: Name of desired palette
  • n: Number of colors desired (i.e. how many categories so n = 4).

The names of all the palettes you can enter into the wes_anderson() function

We can use data from the gapminder package. We will look at the scatterplot between life expectancy and GDP per capita.

We feed the wes_palette() function into the scale_color_manual() with the values = wes_palette() argument.

We indicate that the colours would be the different geographic regions.

If we indicate fill in the geom_point() arguments, we would change the last line to scale_fill_manual()

We can log the gapminder variables with the mutate(across(where(is.numeric), log)). Alternatively, we could scale the axes when we are at the ggplot section of the code with the scale_*_continuous(trans='log10')

gapminder %>% 
  filter(continent != "Oceania") %>% 
  mutate(across(where(is.numeric), log)) %>% 
  ggplot(aes(x = lifeExp, y = gdpPercap)) + 
  geom_point(aes(color = continent), size = 3, alpha = 0.8) +
  # facet_wrap(~factor(continent)) +
  hrbrthemes::theme_ft_rc() + 
  ggtitle("GDP per capita and life expectancy") + 
  theme(legend.title = element_blank(),
        legend.text = element_text(size = 20),
        plot.title = element_text(size = 30)) +
  scale_color_manual(values= wes_palette("FantasticFox1", n = 4)) +

Wes Anderson Trailer GIF - Find & Share on GIPHY

Next looking at bump plot of OECD data with the Royal Tenanbaum’s colour palette.

Click here to read more about the OECD dataset.

trust %>% 
  filter(country_name == "Ireland" | country_name == "Sweden" | country_name == "Germany" | country_name == "Spain" | country_name == "Belgium") %>% 
  group_by(year) %>%
  mutate(rank_budget = rank(-trust, ties.method = "min"),
         rank_budget = as.factor(rank_budget)) %>%
  ungroup()  %>% 
  ggplot(aes(x = year, y  = reorder(rank_budget, desc(rank_budget)), 
             group = country_name,
             color = country_name, fill = country_name)) +
  geom_bump(aes(), 
            smooth = 7,
            size = 5, alpha = 0.9) + 
  geom_point(aes(color = country_name), fill = "white", 
             shape = 21, size = 5, stroke = 5) +
  labs(title = "Level of trust in government",
       subtitle = "Data Source: OECD") + 
  theme(panel.border = element_blank(),
        legend.position = "bottom",
        plot.title = element_text(size = 30),
        legend.title = element_blank(),
        legend.text = element_text(size = 20, color = "white"),
        axis.text.y = element_text(size = 20), 
        axis.text.x = element_text(size = 20),
        legend.background = element_rect(fill = "#5e6472"),
        axis.title = element_blank(),
        axis.text = element_text(color = "white", size = 10),
        text= element_text(size = 15, color = "white"),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_blank(),
        panel.grid.minor.x = element_blank(),
        legend.key = element_rect(fill = "#5e6472"),
        plot.background = element_rect(fill = "#5e6472"),
        panel.background = element_rect(fill = "#5e6472")) +
  guides(colour = guide_legend(override.aes = list(size=8))) +
  scale_color_manual(values= wes_palette("Royal2", n = 5)) +
  scale_x_continuous(n.breaks = 20)

Click here to read more about the bump plot from the ggbump package.

Last, we can look at Darjeeling colour palette.

trust %>% 
  filter(country_name == "Ireland" | country_name == "Germany" | country_name == "Sweden"| country_name == "Spain" | country_name == "Belgium") %>% 
  ggplot(aes(x = year,
             y = trust, group = country_name)) +
  geom_line(aes(color = country_name), size = 3) +
  geom_point(aes(color = country_name), fill = "white", shape = 21, size = 5, stroke = 5) +
  labs(title = "Level of trust in government",
       subtitle = "Data Source: OECD") + 
  theme(panel.border = element_blank(),
        legend.position = "bottom",
        plot.title = element_text(size = 30),
        legend.title = element_blank(),
        legend.text = element_text(size = 20, color = "white"),
        axis.text.y = element_text(size = 20), 
        axis.text.x = element_text(size = 20),
        legend.background = element_rect(fill = "#5e6472"),
        axis.title = element_blank(),
        axis.text = element_text(color = "white", size = 10),
        text= element_text(size = 15, color = "white"),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_blank(),
        panel.grid.minor.x = element_blank(),
        legend.key = element_rect(fill = "#5e6472"),
        plot.background = element_rect(fill = "#5e6472"),
        panel.background = element_rect(fill = "#5e6472")) +
  guides(colour = guide_legend(override.aes = list(size=8))) +
  scale_color_manual(values= wes_palette("Darjeeling1", n = 5)) +
  scale_x_continuous(n.breaks = 20) 

Last we can look at a bar chart counting different regime types in the eighteenth century.

eighteenth_century <- data_1880s %>%
filter(!is.na(regime)) %>%
filter(!is.na(appointment)) %>%
ggplot(aes(appointment)) + geom_bar(aes(fill = factor(regime)), position = position_stack(reverse = TRUE)) + theme(legend.position = "top", text = element_text(size=15), axis.text.x = element_text(angle = -30, vjust = 1, hjust = 0))

Both the regime variable and the appointment variable are discrete categories so we can use the geom_bar() function. When adding the palette to the barplot object, we can use the scale_fill_manual() function.

eighteenth_century + scale_fill_manual(values = wes_palette("Darjeeling1", n = 4)

Now to compare the breakdown with countries in the 21st century (2000 to present)

Wes Anderson GIF - Find & Share on GIPHY

Include country labels to a regression plot with ggplot2 package in R

Sometimes the best way to examine the relationship between our variables of interest is to plot it out and give it a good looking over. For me, it’s most helpful to see where different countries are in relation to each other and to see any interesting outliers.

For this, I can use the geom_text() function from the ggplot2 package.

I will look at the relationship between economic globalization and social globalization in OECD countries in the year 2000.

The KOF Globalisation Index, introduced by Dreher (2006) measures globalization along the economicsocial and political dimension for most countries in the world

First, as always, we install and load the necessary package. This time, it is the ggplot2 package

install.packages("ggplot2")
library(ggplot2)

Next add the following code:

fin <- ggplot(oecd2000, aes(economic_globalization, social_globalization)) 
        + ggtitle("Relationship between Globalization Index Scores among OECD countries in 2000")
        + scale_x_continuous("Economic Globalization Index")
        + scale_y_continuous("Social Globalization Index") 
        + geom_smooth(method = "lm") 
        + geom_point(aes(colour = polity_score), size = 2) + labs(color = "Polity Score")
        + geom_text(hjust = 0, nudge_x = 0.5, size = 4, aes(label = country)) 

fin 

In the aes() function, we enter the two variables we want to plot.

Then I use the next three lines to add titles to axes and graph

I use the geom_smooth() function with the “lm” method to add a best fitting regression line through the points on the plot. Click here to learn more about adding a regression line to a plot.

I add a legend to examine where countries with different democracy scores (taken from the Polity Index) are located on the globalization plane. Click here to learn about adding legends.

The last line is the geom_text() function that I use to specify that I want to label each observation (i.e. each OECD country) with its name, rather than the default dataset number.

Some geom_text() commands to use:

  • nudge_x (or nudge_y) slightly “nudge” the labels from their corresponding points to help minimise messy overlapping.
  • hjust and vjust move the text label “left”, “center”, “right”, “bottom”, “middle” or “top” of the point.

Yes, yes! There is a package that uses the color palettes of Wes Anderson movies to make graphs look just beautiful. Click here to use different Wes Anderson aesthetic themed graphs!

zissou_colors <- wes_palette("Zissou1", 100, type = "continuous")

fin + scale_color_gradientn(colours = zissou_colors)

Which outputs:

Interestingly, it seems that at the very bottom left hand corner of the plot (which shows the countries that are both low in economic globalization and low in social globalization), we have two OECD countries that score high on democracy – Japan and South Korea- right next to two countries that score the lowest in the OECD on democracy, Turkey and Mexico.

So it could be interesting to further examine why these countries from opposite ends of the democracy spectrum have similar pattern of low globalization. It puts a spanner in the proverbial works with my working theory that countries higher in democracy are more likely to be more globalized! What is special about these two high democracy countries that gives them such low scores on globalization.

Create facetted scatterplots with the ggplot2 package in R

If I want to graphically display the relationship between two variables, the ggplot2 package is a very handy way to produce graphs.

For example, I can use the ggplot2 package to graphically examine the relationship between civil society strength and freedom of citizens from torture. Also I can see whether this relationship is the same across regime types.

I choose one year from my dataframe to examine.

data2000 <- myPanel[which(myPanel$year == "2000"),]

Next, I install the ggplot2 package

install.packages("ggplot2")
library(ggplot2)

The grammar of ggplot2 includes:

  • aes() indicates how variables are mapped to visual properties or aesthetics. The first variable goes on the x-axis and the second variable goes on the y-axis.
  • geom_point() creates a scatterplot style graph. Alternatives to this are geom_line(), which creates a line plot and geom_histogram() which creates a histogram plot.

ggplot(data2000, aes(v2xcs_ccsi, v2cltort)) + geom_point() +
xlab("Civil society robustness") +
ylab("Freedom from torture")

Next we can add information on regime types, a categorical variable with four levels.

0 = closed autocracy

1 = electoral autocracy

2 = electoral democracy

3 = liberal democracy

In the aes() function, add colour = regime to differentiate the four categories on the graph

ggplot(data2000, aes(v2xcs_ccsi, v2x_clphy, colour = regime)) +
geom_point()

Alternatively we can use the facet_wrap( ~ regime) function to create four separate scatterplots and examine the relationship separately.

ggplot(data2000, aes(v2xcs_ccsi, v2x_clphy, colour = regime)) +
geom_point() +
facet_wrap(~regime) +
xlab("Civil society robustness") +
ylab("Freedom from torture")

Lastly, we can add a linear model line (method = "lm") with a grey standard error bar (se = TRUE) in the geom_smooth() function.

ggplot(data2000, aes(v2xcs_ccsi, v2x_clphy, colour = regime)) +
geom_point() +
facet_wrap(~regime) +
geom_smooth(method = "lm", se = TRUE) +
xlab("Civil society robustness") +
ylab("Freedom from torture")

In these graphs, we can see that as civil society robustness score increases, the likelihood of a life free from torture increases! Pretty intuitive result and we could argue that there is a third variable – namely strong democratic institutions – that drives this positive relationship.

The graphs break down this relationship across four different regime types, ranging from the most autocratic in the top left hand side to the most democratic in the bottom right. There is more variety in this relationship with closed autocracies (i.e. the red points), with some points deviating far from the line.

The purple graph – liberal democracies – shows a tiny amount of variance. In liberal democracies, it appears that all countries score highly in both civil society robustness and freedom from torture!